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Unsupervised Land Cover Change Detection:
Meaningful Sequential Time Series Analysis

Brian P. Salmon, Jan Corne Olivier, Konrad J. Wessels, Waldo Kleynhans, Frans van den Bergh, and
Karen C. Steenkamp

Abstract—An automated land cover change detection method
is proposed that uses coarse spatial resolution hyper-temporal
earth observation satellite time series data. The study compared
three different unsupervised clustering approaches that operate
on short term Fourier transform coefficients computed over
subsequences of 8-day composite MODerate-resolution Imaging
Spectroradiometer (MODIS) surface reflectance data that were
extracted with a temporal sliding window. The method uses a
feature extraction process that creates meaningful sequential time
series that can be analyzed and processed for change detection.
The method was evaluated on real and simulated land cover
change examples and obtained a change detection accuracy ex-
ceeding 76% on real land cover conversion and more than 70% on
simulated land cover conversion.

Index Terms—Change detection, clustering, satellite, time series.

I. INTRODUCTION

T HE transformation of natural vegetation by practices such
as deforestation, agricultural expansion and urbanization

has significant impacts on hydrology, ecosystems and climate
[1]–[3]. Coarse spatial resolution satellite data provide the only
regional, spatial, long-term and high temporal measurements for
monitoring the earth’s surface. Automated land cover change
detection at regional or global scales, using hyper-temporal,
coarse resolution satellite data has been a highly desired but elu-
sive goal of environmental remote sensing [4]–[6]. Most change
detection studies rely on image differencing, post-classification
comparison methods and change trajectory analysis [7]–[13],
and the data is mostly treated as hyper-dimensional, but not nec-
essarily as hyper-temporal. These methods therefore do not fully
capitalize on the high temporal sampling rate which captures the
dynamics of different land cover types, nor do they provide au-
tomated change detection capabilities.

A time series is a sequence of data points measured at
successive (often uniformly spaced) time intervals. Time series
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analysis comprises methods that attempt to understand the
underlying forces structuring the data. Analyzing this structure
enables the identification of patterns and trends, detection
of change, clustering, modeling, and forecasting [14]. In the
time series context, complete clustering is when the entire
time series is taken as a discrete object and clustered with
conventional methods. In contrast, subsequence clustering is
performed on streaming time series that are extracted with a
sliding window from an individual time series. Time series
analysis is less concerned with the global properties of a time
series and more interest in the subsequences of a time series
[15]. A subsequence for a given time series of length

, is given as

(1)

for , where is the length of the sub-
sequence. The sequential extraction of subsequences in (1) is
achieved by using a temporal sliding window that has a length
of and position that is incremented with a natural number

to extract sequential subsequences from (Fig. 1).
The signal processing and data mining communities have made
wide use of the clustering of subsequence time series, , that
were extracted using a temporal sliding window [16]–[18]. To
date, it has found very limited applications on satellite time se-
ries data.

Recently the data mining community’s attention was brought
to a fundamental limitation of the clustering of subsequences
that were extracted with a sliding window from a time series
[15]. The sliding window causes the clustering algorithms to
create meaningless results as it forms sine wave cluster centers
regardless of the data set, which clearly makes it impossible to
distinguish one dataset’s clusters from another. This is due to the
fact that each data point within the sliding window contributes
to the overall shape of the cluster center as the window moves
through the time series. This limitation was illustrated by using
data sets from various fields, i.e., stockmarket and random walk
data sets.

Keogh and Lin [15] demonstrated a tentative solution,
claiming that non-overlapping sliding windows, with their
positions incremented by exactly the periodic length, would
produce valid clusters when applied to a periodic time series.
Since remote sensing time series data has a very strong periodic
component due to seasonal vegetation dynamics, the extracted
sequential time series could potentially be processed to yield
usable features. A feature extraction method is presented in
Section II-D that will extract features from a time series with
a sliding window that expands on Keogh and Lin’s approach.
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Fig. 1. Subsequence extraction through the use of a sliding window over the two spectral MODIS bands by incrementing by exactly a periodic cycle.

This feature extraction method will reduce the feature space’s
dimensionality and remove the restriction on the sliding window
position that will enable effective subsequence clustering
that does not suffer from the afore-mentioned limitations, and
potentially provide the basis for a land cover change detection
method. Land cover change is defined here the transition of
subsequences of a pixel’s time series from one cluster to
another cluster, after which it remains assigned to the second
cluster for the remainder of the time series [13].

There are two general approaches to classification that can be
applied to time series data, namely supervised and unsupervised
[19], [20]. The supervised approach requires initial training on
labelled pixels according to their land cover type. The disad-
vantage of using a supervised approach to perform change de-
tection is the dependency on periodic high resolution imagery
for updating the unchanged training sets over time. The super-
vised approach must also be robust to errors occurring within
the training sets [21]. The unsupervised approach does not re-
quire any training and detects change in the inherent properties
of the signal. The supervised approach can provide “from what,
to what” information on land cover change [7], [13], while the
unsupervised approach simply provides a “change alarm” [22]
to highlight areas of change for further investigation using e.g.,
high resolution satellite data and field inspections. Generating
training data at global and regional scales is a very labour-inten-
sive and costly endeavour [23], which makes an unsupervised
approach to automated land cover change detection a more at-
tractive option.

The objective of this paper is to introduce the concept of un-
supervised land cover change detection algorithm that operates
on a temporal sliding window of MODIS time series data that
uses a feature extraction method that does not suffer from the

limitation shown by Keogh and Lin [15]. Three well-known un-
supervised clustering techniques were used within a land cover
change detection algorithm and were evaluated specifically on
new settlement development. The land cover change detection
algorithm was tested on real and simulated land cover change
using the 8-day composite MODIS land surface reflectance data
product. The performance of the three unsupervised clustering
techniques were measured against a supervised multilayer per-
ceptron (MLP) that was used to provide an empirical upper limit
to the performance [24]. The two-layer MLP network using sig-
moidal activation functions was chosen as it can closely approx-
imate any decision boundary in any feature space when enough
hidden nodes are present [24].

The paper is organized as follows. Section II presents the
methodology used, while Section II-D discusses the feature ex-
traction approach. Section II-E gives a brief overview of the
clustering algorithm used for the unsupervised change detection
and Section III presents the results for the automated change
detection on real and simulated land cover change. Section IV
presents the conclusions.

II. METHODOLOGY

A. Study Areas

The area of interest was the Limpopo province which is sit-
uated in the northern part of South Africa. The province is still
largely covered by natural vegetation used as grazing for cattle
and wildlife. The development of settlements is one of the most
pervasive forms of land cover change in South Africa. Areas
within the province were selected where settlements and natural
vegetation occur in close proximity to ensure that the rainfall,
soil type and local climate were similar over both land cover
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Fig. 2. Location of the study area in the Limpopo province, South Africa with land cover types polygons overlayed using Albers projection on SPOT5 RGB 321
imagery that was acquired between March 2006 and May 2006. The SPOT2 images were taken of the same area in May 2000.

TABLE I
NUMBER OF PIXELS PER LAND COVER TYPE USED

FOR VALIDATION AND TESTING DATA SETS

types. The selected areas of interest are composed of 433.75
km of natural vegetation and 374.25 km of human settlements
that are distributed throughout the study area (Fig. 2). The total
number of time series (pixels) available for each class is given
in Table I and were evaluated over the time period of February
2000 to February 2008.

B. MODIS Time Series Data

The 500-meter MODIS MCD43A4 land surface reflectance
product was used because it offers nadir and bidirectional
reflectance distribution function (BRDF) adjusted spectral
reflectance bands. This significantly reduces the anisotropic
scattering effects of surfaces under different illumination and
observation conditions [25], [26]. Initial tests on the uncor-
rected 250 meter surface reflectance data (MOD09) were not
successful due to the afore-mentioned BRDF effects. The
MCD43A4 product is produced by acquiring 16 samples from
each of the two MODIS sensors (one on the Aqua satellite, one
on the Terra satellite), that are processed to yield one output

value every 8 days for each spectral band. For each pixel a time
series was extracted from only the first two spectral bands of
the 8-day composite MODIS MCD43A4 data set (tile H20V11)
(year 2000–2008) as these were shown to have considerable
class separation when the features are analyzed [27]. The
quality flags in the MODIS data were used to identify cases
where quality was low due to persistent cloud cover (or other
atmospheric factors) over the 8 day period of data collection
[25], [26]; these samples were replaced with interpolants ob-
tained using a cubic spline fitted through temporal neighbours.

C. Data Sets: Validation, Simulated and Real Land Cover
Change

The unsupervised clustering methods’ generalization accu-
racy was assessed on a validation set. This validation set is com-
posed of time series that were extracted from the MCD43A4
product. The time series were selected using visual interpreta-
tion of SPOT2 images in the year 2000 and SPOT5 images in the
year 2006 to map areas of change and no change in land cover
type during the study period. Through the manual interpretation
of these SPOT images, new settlement developments were dis-
covered within the Limpopo province around the known settle-
ments. These new settlements had to be build over the course of
the 6 years after the natural vegetation has been removed. The
total area of newly formed settlements amounted to 5.25 km .
The total number of time series (pixels) available for each class
in the validation set is given in Table I. Information on known
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TABLE II
MATCHING MATRIX USED FOR LAND COVER CHANGE DETECTION

land cover change is generally very limited [28], thus the land
cover change was also simulated.

Land cover change was simulated by concatenating a set of
time series from the natural vegetation class to another set of
time series from the settlement class and vice versa. This made
it possible to control both the type, rate and timing of change in
order to quantitatively evaluate the change detection methods.
As a control, testing sets containing no land cover change were
also created by concatenating the same land cover type time
series to each other. Hence, there were four testing data subsets
based on concatenating time series of different combination of
time series:

• subset 1: natural vegetation time series (class 1) spliced to
settlement time series (class 2);

• subset 2: settlement time series (class 2) spliced to natural
vegetation time series (class 1);

• subset 3: settlement time series (class 2) spliced to another
settlement time series (class 2);

• subset 4: natural vegetation time series (class 1) spliced to
another natural vegetation time series (class 1).

These four subsets were used to produce a matching matrix
(Table II) to test if the unsupervised methods can detect change
reliably in an automated fashion on subsets 1 and 2, while not
falsely detecting change for subsets 3 and 4. The number of sim-
ulated land cover change time series available for the analysis
process is also given in Table I. The concatenation of two time
series produced an abrupt change in the time series, which does
not necessarily represent the reality of human-induced change
such as a new settlement, which may take several months to de-
velop. Initial experiments were conducted where the signals of
the two different classes were linearly blended over a time pe-
riod of 12 to 24 months. These experiments revealed that the
blending period merely translated into an extended period of
classification uncertainty without adding any more depth to the
analysis [29]. Therefore, only abrupt change was considered
here.

D. Feature Extraction—Subsequence Time Series

In this section a method is shown that will create usable fea-
tures from time series extracted from MODIS data. The
fixed acquisition rate of the MODIS product and the seasonality
of the vegetation in the study area makes for an annual periodic
signal that has a phase offset that is correlated with rainfall
seasonality and vegetation phenology. The Fast Fourier Trans-
form (FFT) [30] of was computed, which decomposes the
time sequence’s values into components of different frequen-
cies with phase offsets. This is often referred to as the frequency
(Fourier) spectrum of the time series. Because the time series

is annually periodic, this would translate into frequency

components in the frequency spectrum that have fixed positions.
This can be viewed as a fixed location for each of the classes
for the clustering algorithm in the feature space regardless of
the sliding window position in time, which overcomes the main
disadvantage to a sliding window [15]. Because of the seasonal
attribute typically associated with MODIS time series and the
slow temporal variation relative to the acquisition interval [31],
the first few FFT components dominate the frequency spectrum.
This reduces the number of features needed to represent the fea-
ture space and thus reduced the dimensionality, making clus-
tering a feasible option [32].

Another limitation was that the sliding window position had
to be shifted by exactly a periodic cycle [15]. This limitation was
addressed by computing the magnitude of all the FFT compo-
nents, which removed all the phase offsets. This made it possible
to compensate for both the restrictive position of the sliding
window and the rainfall seasonality. This means that , which
is the position of the sliding window, does not only have to be
incremented by a fixed annual period, but can be incremented
by any natural number . The features for the clustering
method were extracted from the sliding window by the
methodology discussed above as

(2)

where represents the Fourier transform. From the discus-
sion above, a sliding window of any length can be applied to the
MODIS time series and moved along the time axis at any rate
as long as the feature extraction rule in (2) is applied. Fig. 3 il-
lustrates how the features that are extracted using two different
sliding window positions in time maintain their position in the
feature space, even though the two sliding windows are arbi-
trarily positioned in time. The mean and annual FFT compo-
nents from (2) were considered as it was shown by Lhermitte
[27] that considerable class separation can be achieved from
these components. Many FFT based classification and segmen-
tation methods consequently only consider a few FFT compo-
nents [27], [33], [34]. The sliding window length was fixed at

samples to correspond to the length of the annual cycle,
thereby minimizing the spectral smear and increasing the power
in each feature.

E. Unsupervised Change Detection

The clustering method was required to process subsequences
of time series data and detect land cover change as a function
of time. Land cover change is declared when consecutive
subsequences that are extracted from one MODIS time series
transitions from one cluster to another cluster and remains
in the newly assigned cluster for the rest of the time series.
The temporal sliding window was designed to operate on a
subsequence of the time series to extract information from
two spectral bands from the MODIS product (Fig. 4). These
extracted features were analyzed with three different clustering
techniques: Ward, -means and Expectation-Maximization
(EM) [24].

Clustering techniques are broadly divided into hierarchical
and partitional clustering approaches [15]. The Ward clustering
algorithm is an agglomerative hierarchical clustering method
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Fig. 3. Feature components � ��� extracted from two sliding windows at random positions using (2).

Fig. 4. Subsequences of the time series extracted from the two spectral MODIS
bands that are processed for clustering and change detection.

that produces a nested hierarchy of clusters of discrete objects
according to some kind of proximity matrix (similar or dissim-
ilar distance matrices) [35]. A summary of the Ward clustering
algorithm is given in Table III. The Ward clustering method [36]
was used because it provided the highest cophenetic correla-
tion coefficient (minimum loss from original information) when
compared to minimum, maximum and average link clustering
[37].

TABLE III
AN OUTLINE OF THE WARD HIERARCHICAL CLUSTERING ALGORITHM

TABLE IV
AN OUTLINE OF THE �-MEANS PARTITIONAL CLUSTERING ALGORITHM

The second approach to clustering is partitional clustering,
a family which includes the -means and the EM algorithm
[38]. These partitional clustering techniques are usually used as
a benchmark for other algorithms, and have been used in many
other fields [37].

The partitional clustering method creates an unnested parti-
tioning of the data points with clusters. A silhouette graph
[39] was used to determine the optimal number of clusters for
partitional clustering and resulted in two clusters being the best
choice. -means is a heuristic, hill climbing algorithm and can
be viewed as a gradient descent approach which minimizes the
sum of squared error of each feature point from the nearest
cluster centroid in the feature space (Table IV) [40].
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TABLE VI
AVERAGE CLASSIFICATION ACCURACY OF THE VALIDATION SET FOR EACH OF THE CLUSTERING METHODS PRESENTED, WITH STANDARD DEVIATION

IN PARENTHESIS

TABLE VII
MATCHING MATRIX REPRESENTING THE LAND COVER CHANGE DETECTION ACCURACY ON THE SIMULATED LAND COVER CHANGE DATA SET FOR ALL THE

CLUSTERING METHODS ON THE STUDY AREA

TABLE V
AN OUTLINE OF THE EM PARTITIONAL CLUSTERING ALGORITHM

The EM algorithm attempts to fit Gaussian Mixture
models to the features that would produce the highest a-poste-
rior probability to all features (Table V). It was observed that
all three clustering techniques produced minor oscillations in
the cluster assignments of consecutive subsequences in areas
of high cluster membership uncertainty. To smooth out all
transitory oscillations in the clustering labels, a moving average
window of length 3 was applied to the three clustering method’s
output.

An overfitted MLP was used to provide an upper bound on the
performance that can be expected from the given features. The
MLP comprises an input layer, one hidden layer and an output
layer. All hidden and output layers used a tangent sigmoid acti-
vation function in each node. The weights in the training phase
of the MLP were determined using a steepest descent gradient
optimization method, with gradients estimated using backprop-
agation [24]. The MLP architecture was optimized at each time
increment in the sliding window and a moving average window
length of 3 was applied to the MLP outputs to smooth out all
transitory oscillations in all classifications.

III. EXPERIMENTAL RESULTS

A. Clustering Accuracy—No Change Validation Set

The clustering algorithms were tested on all the no change
time series in the validation set; the experimental accuracies are
reported in Table VI. Each entry in Table VI lists the average
clustering accuracy calculated over 48 independent experiments
(standard deviation in parentheses) using cross validation [41].

The -means outperformed the Ward clustering in overall clus-
tering accuracy by 2.04% (Table VI). The more significant result
is the low standard deviation obtained by the -means algo-
rithm to cluster the time series data. An EM algorithm was used
to fit two Gaussian mixture models over all the features in the
feature space and produced results comparable to the -means
algorithm. The MLP had a average classification accuracy of
85.11% and thus performed better than the unsupervised tech-
niques by 3.87%, when using the same features.

B. Change Detection—Simulated Land Cover Change

In Section II-C four testing data subsets were introduced
which correspond to four possible outcomes of the land cover
change detection analysis (Table II). Only the true positive
and true negative cases are reported, as the other two cases are
simply the complement. The outcome of the change detection
simulations is summarised in the matching matrix shown in
Table VII. The land cover change detection accuracy differs
by less than 1% between the different clustering algorithms
(Table VII). The -means was considered the better option,
due to the lower standard deviation reported in the average
clustering accuracy in the no change time series (Table VI). The
MLP had a better performance on the true positive by 11.21%
and 7.84% on the true negatives than the three unsupervised
methods.

C. Change Detection—Real Land Cover Change

Fig. 5 illustrates SPOT images of real land cover change from
natural vegetation (2 May 2000) to a new human settlement (10
May 2006) in the Limpopo province. This shows an example of
a new settlement that had been established in the last six years.
All the clustering algorithms were tested on all the known new
settlements developed on previously natural vegetated areas in
the Limpopo province (Table VIII). Even though the accuracy of
76.12% reported in Table VIII were exactly the same for all the
unsupervised clustering techniques, the EM algorithm detected
land cover change in different areas to the -means algorithm.
The Ward clustering detected change on the same time series as
the EM algorithm, but the Ward clustering provided transitory
oscillations in all its false negative reports. This could be due to
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Fig. 5. SPOT2 image taken on 2 May 2000 of natural vegetation area in the Limpopo province (a) and a SPOT5 image taken on 10 May 2006 of a new human
settlement called Sekuruwe (28.94 E, 23.94 S) in (b).

TABLE VIII
LAND COVER CHANGE DETECTION ACCURACY FOR EACH OF THE CLUSTERING METHODS ON THE 5.25 km AREA

OF REAL NEW HUMAN SETTLEMENT DEVELOPMENT

the high standard deviation observed in the average clustering
accuracy (Table VI).

IV. CONCLUSIONS

In this paper, a method for unsupervised land cover change
detection incorporating a temporal sliding window, operating on
MODIS time series data was demonstrated. The unsupervised
approaches reported true positive measurements of higher than
70.5% on all simulated land cover change using cross valida-
tion [41]. The results for the detection of simulated land cover
change was compared to real mapped settlement development
and a true positive accuracy of 76.12% was achieved.

The difference in change detection accuracy between the real
and simulated land cover change was still acceptably small in
these experiments, even though only a limited number of real
land conversion examples were available. The average classifi-
cation accuracies of the unsupervised approaches were similar
to that of a supervised MLP (Table VI). The supervised training
of the MLP however did ensured a strict boundary within the
feature space, which allowed better change detection accuracy
(Table VII).

Since the MODIS time series has a very strong periodic com-
ponent due to seasonal vegetation growth, it provides the re-
mote sensing community with a special type of data which, if
processed correctly, is immune to the limitation pointed out by
Keogh and Lin [15]. This is mainly due to the extraction process
which produced a short term FFT that fixed the feature positions,
which allows the features to be analyzed and permits the tem-
poral sliding window to be moved in any time increment.

This feature extraction method will enable the analysis of
meaningful sequential subsequence extraction that will incor-
porate the hyper-temporal properties that is provided by the
MODIS product for the use of land cover change detection,
which aids in providing another dimension for most change de-
tection studies [7]–[13]. This should rekindle the remote sensing
community’s quest for automated change detection using time
series as it allows for the application of different types of algo-
rithms and methodologies to the sequential subsequences that
were extracted from satellite data time series. This is especially
relevant as emissions and other impacts of land cover change is
expected to have a very large impact on climate change [42].
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