234 research outputs found

    Integrative analysis of gut microbiota composition, host colonic gene expression and intraluminal metabolites in aging C57BL/6J mice

    Get PDF
    The aging process is associated with diminished colonic health. In this study, we applied an integrative approach to reveal potential interactions between determinants of colonic health in aging C57BL/6J mice. Analysis of gut microbiota composition revealed an enrichment of various potential pathobionts, including Desulfovibrio spp., and a decline of the health-promoting Akkermansia spp. and Lactobacillus spp. during aging. Intraluminal concentrations of various metabolites varied between ages and we found evidence for an increased gut permeability at higher age. Colonic gene expression analysis suggested that during the early phase of aging (between 6 and 12 months), expression of genes involved in epithelial-to-mesenchymal transition and (re)organization of the extracellular matrix were increased. Differential expression of these genes was strongly correlated with Bifidobacterium spp. During the later phase of aging (between 12 and 28 months), gene expression profiles pointed towards a diminished antimicrobial defense and were correlated with an uncultured Gastranaerophilales spp. This study demonstrates that aging is associated with pronounced changes in gut microbiota composition and colonic gene expression. Furthermore, the strong correlations between specific bacterial genera and host gene expression may imply that orchestrated interactions take place in the vicinity of the colonic wall and potentially mediate colonic health during aging.</p

    Associations of 25-hydroxyvitamin D with fasting glucose, fasting insulin, dementia and depression in European elderly: the SENECA study

    Get PDF
    Purpose The classical consequence of vitamin D deficiency is osteomalacia, but recent insights into the function of vitamin D suggest that it may play a role in other body systems as well. The objective of this study was to examine the association between 25-hydroxyvitamin D (25(OH)D) and markers of glucose metabolism (n = 593), global cognitive functioning (n = 116) and depression (n = 118) in European elderly participating in the SENECA study. Moreover, we wanted to explore whether the observed associations of 25(OH)D with depression and global cognitive performance were mediated by fasting plasma glucose (FPG) levels. Methods Cross-sectional associations between 25(OH)D and FPG, fasting plasma insulin (FPI) and homeostatic model assessment-insulin resistance (HOMA-IR), a marker of insulin resistance, were estimated from multiple regression analyses. Associations of 25(OH)D with global cognitive functioning (Mini Mental State Examination) and depression (Geriatric Depression Scale) were examined using Poisson regression. Results An inverse association was observed between 25(OH)D and FPG (ß-0.001), indicating a 1 % decrease in FPG per 10 nmol/L increase in 25(OH)D, but after full adjustment for demographic factors, lifestyle factors and calcium intake, this association was not statistically significant (P = 0.07). Although participants with intermediate and high serum 25(OH)D levels showed a tendency towards a lower depression score after adjustment for demographic and lifestyle factors, RR and 95 % CI: 0.73 (0.51–1.04) and 0.76 (0.52–1.11), respectively, these findings were not statistically significant. Conclusion An inverse association of 25(OH)D with depression and FPG was observed, but this association was not statistically significant. There was no association between 25(OH)D with FPI and HOMA-IR or with global cognitive functioning. More studies are needed to further explore the possible role of vitamin D in the various body system

    Maternal exposure to a Western-style diet causes differences in intestinal microbiota composition and gene expression of suckling mouse pups

    Get PDF
    Scope:The long-lasting consequences of nutritional programming during the early phase of life have become increasingly evident. The effects of maternal nutrition on the developing intestine are still underexplored. Methods and results: In this study we observed 1) altered microbiota composition of the colonic luminal content, and 2) differential gene expression in the intestinal wall in two-week-old mouse pups born from dams exposed to a Western-style (WS) diet during the perinatal period. A sexually dimorphic effect was found for the differentially expressed genes in the offspring of WS diet-exposed dams but no differences between male and female pups were found for the microbiota composition. Integrative analysis of the microbiota and gene expression data revealed that the maternal WS diet independently affected gene expression and microbiota composition. However, the abundance of bacterial families not affected by the WS diet (Bacteroidaceae, Porphyromonadaceae and Lachnospiraceae) correlated with the expression of genes playing a key role in intestinal development and functioning (e.g. Pitx2 and Ace2). Conclusion: Our data reveal that maternal consumption of a WS diet during the perinatal period alters both gene expression and microbiota composition in the intestinal tract of two-week-old offspring

    Lifelong calorie restriction affects indicators of colonic health in aging C57Bl/6J mice

    Get PDF
    Diminished colonic health is associated with various age-related pathologies. Calorie restriction (CR) is an effective strategy to increase healthy lifespan, although underlying mechanisms are not fully elucidated. Here, we report the effects of lifelong CR on indicators of colonic health in aging C57Bl/6J mice. Compared to an ad libitum control and moderate-fat diet, 30% energy reduction was associated with attenuated immune- and inflammation-related gene expression in the colon. Furthermore, expression of genes involved in lipid metabolism was higher upon CR, which may point towards efficient regulation of energy metabolism. The relative abundance of bacteria considered beneficial to colonic health, such as Bifidobacterium and Lactobacillus, increased in the mice exposed to CR for 28 months as compared to the other diet groups. We found lower plasma levels of interleukin 6 and lower levels of various metabolites, among which bile acids, in the colonic luminal content of CR-exposed mice as compared to the other diet groups. Switching from CR to an ad libitum moderate-fat diet at old age (24 months) revealed remarkable phenotypic plasticity in terms of gene expression, microbiota composition and metabolite levels, although expression of a subset of genes remained CR-associated. This study demonstrated in a comprehensive way that CR affects indicators of colonic health in aging mice. Our findings provide unique leads for further studies that need to address optimal and feasible strategies for prolonged energy deprivation, which may contribute to healthy aging

    Akkermansia muciniphila ameliorates the age-related decline in colonic mucus thickness and attenuates immune activation in accelerated aging Ercc1(-/7) mice

    Get PDF
    BackgroundThe use of Akkermansia muciniphila as potential therapeutic intervention is receiving increasing attention. Health benefits attributed to this bacterium include an improvement of metabolic disorders and exerting anti-inflammatory effects. The abundance of A. muciniphila is associated with a healthy gut in early mid- and later life. However, the effects of A. muciniphila on a decline in intestinal health during the aging process are not investigated yet. We supplemented accelerated aging Ercc1(-/7) mice with A. muciniphila for 10weeks and investigated histological, transcriptional and immunological aspects of intestinal health.ResultsThe thickness of the colonic mucus layer increased about 3-fold after long-term A. muciniphila supplementation and was even significantly thicker compared to mice supplemented with Lactobacillus plantarum WCFS1. Colonic gene expression profiles pointed towards a decreased expression of genes and pathways related to inflammation and immune function, and suggested a decreased presence of B cells in colon. Total B cell frequencies in spleen and mesenteric lymph nodes were not altered after A. muciniphila supplementation. Mature and immature B cell frequencies in bone marrow were increased, whereas B cell precursors were unaffected. These findings implicate that B cell migration rather than production was affected by A. muciniphila supplementation. Gene expression profiles in ileum pointed toward a decrease in metabolic- and immune-related processes and antimicrobial peptide production after A. muciniphila supplementation. Besides, A. muciniphila decreased the frequency of activated CD80(+)CD273(-) B cells in Peyer's patches. Additionally, the increased numbers of peritoneal resident macrophages and a decrease in Ly6C(int) monocyte frequencies in spleen and mesenteric lymph nodes add evidence for the potentially anti-inflammatory properties of A. muciniphila.ConclusionsAltogether, we show that supplementation with A. muciniphila prevented the age-related decline in thickness of the colonic mucus layer and attenuated inflammation and immune-related processes at old age. This study implies that A. muciniphila supplementation can contribute to a promotion of healthy aging.Peer reviewe

    Plasticity of lifelong calorie-restricted C57BL/6J mice in adapting to a medium-fat diet intervention at old age

    Get PDF
    Calorie restriction (CR) is a dietary regimen that supports healthy aging. In this study we investigated the systemic and liver-specific responses caused by a diet switch to a medium-fat (MF) diet in 24-month-old life-long, CR-exposed mice. This study aimed to increase the knowledge base on dietary alterations of gerontological relevance. Nine-week-old C57BL/6J mice were exposed either to a control, CR or MF diet. At the age of 24 months, a subset of mice of the CR group was transferred to ad libitum MF feeding (CR-MF). The mice were sacrificed at the age of 28 months, then biochemical and molecular analyses were performed. Our results showed that, despite the long-term exposure to the CR regimen, mice in the CR-MF group displayed hyperphagia, rapid weight gain, and hepatic steatosis. However, no hepatic fibrosis/injury or alteration in CR-improved survival was observed in the diet switch group. The liver transcriptomic profile of CR-MF mice largely shifted to a profile similar to the MF-fed animals but leaving ~22% of the 1578 differentially regulated genes between the CR and MF diet groups comparable with the expression of the life-long CR group. Therefore, although the diet switch was performed at an old age, the CR-MF-exposed mice showed plasticity in coping with the challenge of a MF diet without developing severe liver pathologies

    Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an α-glucosidase inhibitor or a Nrf2-inducer

    Get PDF
    The National Institute on Aging Interventions Testing Program (ITP) evaluates agents hypothesized to increase healthy lifespan in genetically heterogeneous mice. Each compound is tested in parallel at three sites, and all results are published. We report the effects of lifelong treatment of mice with four agents not previously tested: Protandim, fish oil, ursodeoxycholic acid (UDCA) and metformin – the latter with and without rapamycin, and two drugs previously examined: 17-α-estradiol and nordihydroguaiaretic acid (NDGA), at doses greater and less than used previously. 17-α-estradiol at a threefold higher dose robustly extended both median and maximal lifespan, but still only in males. The male-specific extension of median lifespan by NDGA was replicated at the original dose, and using doses threefold lower and higher. The effects of NDGA were dose dependent and male specific but without an effect on maximal lifespan. Protandim, a mixture of botanical extracts that activate Nrf2, extended median lifespan in males only. Metformin alone, at a dose of 0.1% in the diet, did not significantly extend lifespan. Metformin (0.1%) combined with rapamycin (14 ppm) robustly extended lifespan, suggestive of an added benefit, based on historical comparison with earlier studies of rapamycin given alone. The α-glucosidase inhibitor, acarbose, at a concentration previously tested (1000 ppm), significantly increased median longevity in males and 90th percentile lifespan in both sexes, even when treatment was started at 16 months. Neither fish oil nor UDCA extended lifespan. These results underscore the reproducibility of ITP longevity studies and illustrate the importance of identifying optimal doses in lifespan studies

    Proteolytic cleavage of p53 mutants in response to mismatched DNA

    Get PDF
    Interaction of p53 with mismatched DNA induces proteolytic cleavage with release of a 35-kDa protein fragment from the p53–DNA complexes. The 35-kDa cleavage product is activated for specific biochemical function(s) and may play a role in the cellular response to DNA damage (Molinari et al (1996) Oncogene13: 2077–2086; Okorokov et al (1997) EMBO J16: 6008–6017). In the present study we have asked if mutants of p53 retain the ability to undergo similar proteolytic cleavage, and compared sequence-specific ‘DNA contact’ with ‘structural’ mutants commonly found in human cancer. In addition, a series of phosphorylation site mutants were generated to investigate the possible effects of phosphorylation/dephosphorylation on the proteolytic cleavage of p53. All mutants tested bound to a mismatched DNA target in vitro. Moreover, studies in vitro and in vivo indicate that p53 mutants with intact conformational structure (as determined by immunoreactivity with PAb246 and PAb1620) retain the ability to undergo proteolytic cleavage similar, if not identical, to the wild-type p53 protein. Our results suggest that the capacity for p53 to bind mismatched DNA is independent of structural conformation of the central core domain. Proteolytic cleavage, however, is crucially dependent upon a wild-type conformation of the protein. © 1999 Cancer Research Campaig
    corecore