231 research outputs found

    ϒ production in p–Pb collisions at √sNN=8.16 TeV

    Get PDF
    ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical calculations.publishedVersio

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Multiplicity dependence of light (anti-)nuclei production in p–Pb collisions at sNN=5.02 TeV

    Get PDF
    The measurement of the deuteron and anti-deuteron production in the rapidity range −1 < y < 0 as a function of transverse momentum and event multiplicity in p–Pb collisions at √sNN = 5.02 TeV is presented. (Anti-)deuterons are identified via their specific energy loss dE/dx and via their time-of- flight. Their production in p–Pb collisions is compared to pp and Pb–Pb collisions and is discussed within the context of thermal and coalescence models. The ratio of integrated yields of deuterons to protons (d/p) shows a significant increase as a function of the charged-particle multiplicity of the event starting from values similar to those observed in pp collisions at low multiplicities and approaching those observed in Pb–Pb collisions at high multiplicities. The mean transverse particle momenta are extracted from the deuteron spectra and the values are similar to those obtained for p and particles. Thus, deuteron spectra do not follow mass ordering. This behaviour is in contrast to the trend observed for non-composite particles in p–Pb collisions. In addition, the production of the rare 3He and 3He nuclei has been studied. The spectrum corresponding to all non-single diffractive p-Pb collisions is obtained in the rapidity window −1 < y < 0 and the pT-integrated yield dN/dy is extracted. It is found that the yields of protons, deuterons, and 3He, normalised by the spin degeneracy factor, follow an exponential decrease with mass number

    ϒ production in p–Pb collisions at √sNN=8.16 TeV

    Get PDF
    ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical calculations

    ϒ production in p–Pb collisions at √sNN=8.16 TeV

    No full text
    ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical calculation

    Production of light-flavor hadrons in pp collisions at √s = 7 and √s = 13 TeV

    No full text
    The production of π±, K±, K0S, K∗(892)0, p, ϕ(1020), Λ, Ξ−, Ω−, and their antiparticles was measured in inelastic proton–proton (pp) collisions at a center-of-mass energy of s√ = 13 TeV at midrapidity (|y|<0.5) as a function of transverse momentum (pT) using the ALICE detector at the CERN LHC. Furthermore, the single-particle pT distributions of K0 S, , and in inelastic pp collisions at √s = 7 TeV are reported here for the first time. The pT distributions are studied at midrapidity within the transverse momentum range 0 ≀ pT ≀ 20 GeV/c, depending on the particle species. The pT spectra, integrated yields, and particle yield ratios are discussed as a function of collision energy and compared with measurements at lower √s and with results from various general-purpose QCD-inspired Monte Carlo models. A hardening of the spectra at high pT with increasing collision energy is observed, which is similar for all particle species under study. The transverse mass and xT ≡ 2pT/ √s scaling properties of hadron production are also studied. As the collision energy increases from √s = 7–13 TeV, the yields of non- and single-strange hadrons normalized to the pion yields remain approximately constant as a function of √s, while ratios for multi-strange hadrons indicate enhancements. The pT-differential cross sections of π±, K± and p (p) are compared with next-to-leading order perturbative QCD calculations, which are found to overestimate the cross sections for π± and p (p) at high pT

    Global baryon number conservation encoded in net-proton fluctuations measured in Pb–Pb collisions at √sNN=2.76 TeV

    No full text
    Experimental results are presented on event-by-event net-proton fluctuation measurements in Pb–Pb collisions at √sNN = 2.76 TeV, recorded by the ALICE detector at the CERN LHC. These measurements have as their ultimate goal an experimental test of Lattice QCD (LQCD) predictions on second and higher order cumulants of net-baryon distributions to search for critical behavior near the QCD phase boundary. Before confronting them with LQCD predictions, account has to be taken of correlations stemming from baryon number conservation as well as fluctuations of participating nucleons. Both effects influence the experimental measurements and are usually not considered in theoretical calculations. For the first time, it is shown that event-by-event baryon number conservation leads to subtle long-range correlations arising from very early interactions in the collisions

    Production of light-flavor hadrons in pp collisions at √s = 7 and √s = 13 TeV

    No full text
    The production of π±, K±, K0S, K∗(892)0, p, ϕ(1020), Λ, Ξ−, Ω−, and their antiparticles was measured in inelastic proton–proton (pp) collisions at a center-of-mass energy of s√ = 13 TeV at midrapidity (|y|<0.5) as a function of transverse momentum (pT) using the ALICE detector at the CERN LHC. Furthermore, the single-particle pT distributions of K0S, Λ, and Λ¯¯¯¯ in inelastic pp collisions at s√=7 TeV are reported here for the first time. The pT distributions are studied at midrapidity within the transverse momentum range 0≀pT≀20 GeV/c, depending on the particle species. The pT spectra, integrated yields, and particle yield ratios are discussed as a function of collision energy and compared with measurements at lower s√ and with results from various general-purpose QCD-inspired Monte Carlo models. A hardening of the spectra at high pT with increasing collision energy is observed, which is similar for all particle species under study. The transverse mass and xT≡2pT/s√ scaling properties of hadron production are also studied. As the collision energy increases from s√ = 7–13 TeV, the yields of non- and single-strange hadrons normalized to the pion yields remain approximately constant as a function of s√, while ratios for multi-strange hadrons indicate enhancements. The pT-differential cross sections of π±, K± and p (pÂŻÂŻÂŻ) are compared with next-to-leading order perturbative QCD calculations, which are found to overestimate the cross sections for π± and p (pÂŻÂŻÂŻ) at high pT
    • 

    corecore