219 research outputs found

    Meeting report : GBIF hackathon-workshop on Darwin Core and sample data (22-24 May 2013)

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Standards in Genomic Sciences 9 (2014): 585-598, doi:10.4056/sigs.4898640.The workshop-hackathon was convened by the Global Biodiversity Information Facility (GBIF) at its secretariat in Copenhagen over 22-24 May 2013 with additional support from several projects (RCN4GSC, EAGER, VertNet, BiSciCol, GGBN, and Micro B3). It assembled a team of experts to address the challenge of adapting the Darwin Core standard for a wide variety of sample data. Topics addressed in the workshop included 1) a review of outstanding issues in the Darwin Core standard, 2) issues relating to publishing of biodiversity data through Darwin Core Archives, 3) use of Darwin Core Archives for publishing sample and monitoring data, 4) the case for modifying the Darwin Core Text Guide specification to support many-to-many relations, and 5) the generalization of the Darwin Core Archive to a “Biodiversity Data Archive”. A wide variety of use cases were assembled and discussed in order to inform further developments.We gratefully acknowledge support from the Global Biodiversity Information Facility (GBIF), from the Global Genome Biodiversity Network (GGBN), from the EU 7FP Biodiversity, Bioinformatics, Biotechnology project (Micro B3), and from the US National Science Foundation (NSF) through the following grants: DBI-0840989 [Research Coordination Network for the Ge-nomic Standards Consortium (RCN4GSC)], IIS-1255035 [EAGER: An Interoperable Information Infrastructure for Biodiversity Research (I3BR)], ABI Development: Collaborative Research: VertNet, a New Model for Bio-diversity Networks (DBI-1062193), and Collaborative Research: BiSciCol Tracker: Towards a tagging and tracking infrastructure for biodiversity science collec-tions (DBI-0956426)

    Meeting Report: GBIF hackathon-workshop on Darwin Core and sample data (22-24 May 2013)

    Get PDF
    This is the published version, also available at http://dx.doi.org/10.4056/sigs.4898640.The workshop-hackathon was convened by the Global Biodiversity Information Facility (GBIF) at its secretariat in Copenhagen over 22-24 May 2013 with additional support from several projects (RCN4GSC, EAGER, VertNet, BiSciCol, GGBN, and Micro B3). It assembled a team of experts to address the challenge of adapting the Darwin Core standard for a wide variety of sample data. Topics addressed in the workshop included 1) a review of outstanding issues in the Darwin Core standard, 2) issues relating to publishing of biodiversity data through Darwin Core Archives, 3) use of Darwin Core Archives for publishing sample and monitoring data, 4) the case for modifying the Darwin Core Text Guide specification to support many-to-many relations, and 5) the generalization of the Darwin Core Archive to a “Biodiversity Data Archive”. A wide variety of use cases were assembled and discussed in order to inform further developments

    Meeting Report: GBIF hackathon-workshop on Darwin Core and sample data (22-24 May 2013)

    Get PDF
    This is the published version, also available at http://dx.doi.org/10.4056/sigs.4898640.The workshop-hackathon was convened by the Global Biodiversity Information Facility (GBIF) at its secretariat in Copenhagen over 22-24 May 2013 with additional support from several projects (RCN4GSC, EAGER, VertNet, BiSciCol, GGBN, and Micro B3). It assembled a team of experts to address the challenge of adapting the Darwin Core standard for a wide variety of sample data. Topics addressed in the workshop included 1) a review of outstanding issues in the Darwin Core standard, 2) issues relating to publishing of biodiversity data through Darwin Core Archives, 3) use of Darwin Core Archives for publishing sample and monitoring data, 4) the case for modifying the Darwin Core Text Guide specification to support many-to-many relations, and 5) the generalization of the Darwin Core Archive to a “Biodiversity Data Archive”. A wide variety of use cases were assembled and discussed in order to inform further developments

    Meeting Report: GBIF hackathon-workshop on Darwin Core and sample data (22-24 May 2013)

    Get PDF
    This is the published version, also available at http://dx.doi.org/10.4056/sigs.4898640.The workshop-hackathon was convened by the Global Biodiversity Information Facility (GBIF) at its secretariat in Copenhagen over 22-24 May 2013 with additional support from several projects (RCN4GSC, EAGER, VertNet, BiSciCol, GGBN, and Micro B3). It assembled a team of experts to address the challenge of adapting the Darwin Core standard for a wide variety of sample data. Topics addressed in the workshop included 1) a review of outstanding issues in the Darwin Core standard, 2) issues relating to publishing of biodiversity data through Darwin Core Archives, 3) use of Darwin Core Archives for publishing sample and monitoring data, 4) the case for modifying the Darwin Core Text Guide specification to support many-to-many relations, and 5) the generalization of the Darwin Core Archive to a “Biodiversity Data Archive”. A wide variety of use cases were assembled and discussed in order to inform further developments

    Meeting Report: GBIF hackathon-workshop on Darwin Core and sample data (22-24 May 2013)

    Get PDF
    This is the published version, also available at http://dx.doi.org/10.4056/sigs.4898640.The workshop-hackathon was convened by the Global Biodiversity Information Facility (GBIF) at its secretariat in Copenhagen over 22-24 May 2013 with additional support from several projects (RCN4GSC, EAGER, VertNet, BiSciCol, GGBN, and Micro B3). It assembled a team of experts to address the challenge of adapting the Darwin Core standard for a wide variety of sample data. Topics addressed in the workshop included 1) a review of outstanding issues in the Darwin Core standard, 2) issues relating to publishing of biodiversity data through Darwin Core Archives, 3) use of Darwin Core Archives for publishing sample and monitoring data, 4) the case for modifying the Darwin Core Text Guide specification to support many-to-many relations, and 5) the generalization of the Darwin Core Archive to a “Biodiversity Data Archive”. A wide variety of use cases were assembled and discussed in order to inform further developments

    Meeting Report: GBIF hackathon-workshop on Darwin Core and sample data (22-24 May 2013)

    Get PDF
    This is the published version, also available at http://dx.doi.org/10.4056/sigs.4898640.The workshop-hackathon was convened by the Global Biodiversity Information Facility (GBIF) at its secretariat in Copenhagen over 22-24 May 2013 with additional support from several projects (RCN4GSC, EAGER, VertNet, BiSciCol, GGBN, and Micro B3). It assembled a team of experts to address the challenge of adapting the Darwin Core standard for a wide variety of sample data. Topics addressed in the workshop included 1) a review of outstanding issues in the Darwin Core standard, 2) issues relating to publishing of biodiversity data through Darwin Core Archives, 3) use of Darwin Core Archives for publishing sample and monitoring data, 4) the case for modifying the Darwin Core Text Guide specification to support many-to-many relations, and 5) the generalization of the Darwin Core Archive to a “Biodiversity Data Archive”. A wide variety of use cases were assembled and discussed in order to inform further developments

    Spinor Bose-Einstein condensates

    Full text link
    An overview on the physics of spinor and dipolar Bose-Einstein condensates (BECs) is given. Mean-field ground states, Bogoliubov spectra, and many-body ground and excited states of spinor BECs are discussed. Properties of spin-polarized dipolar BECs and those of spinor-dipolar BECs are reviewed. Some of the unique features of the vortices in spinor BECs such as fractional vortices and non-Abelian vortices are delineated. The symmetry of the order parameter is classified using group theory, and various topological excitations are investigated based on homotopy theory. Some of the more recent developments in a spinor BEC are discussed.Comment: To appear in Physics Reports. The PDF file with high resolution figures is available from the following website: http://cat.phys.s.u-tokyo.ac.jp/publication/review_of_spinorBEC.pd

    Organs to Cells and Cells to Organoids: The Evolution of in vitro Central Nervous System Modelling

    Get PDF
    With 100 billion neurons and 100 trillion synapses, the human brain is not just the most complex organ in the human body, but has also been described as “the most complex thing in the universe.” The limited availability of human living brain tissue for the study of neurogenesis, neural processes and neurological disorders has resulted in more than a century-long strive from researchers worldwide to model the central nervous system (CNS) and dissect both its striking physiology and enigmatic pathophysiology. The invaluable knowledge gained with the use of animal models and post mortem human tissue remains limited to cross-species similarities and structural features, respectively. The advent of human induced pluripotent stem cell (hiPSC) and 3-D organoid technologies has revolutionised the approach to the study of human brain and CNS in vitro, presenting great potential for disease modelling and translational adoption in drug screening and regenerative medicine, also contributing beneficially to clinical research. We have surveyed more than 100 years of research in CNS modelling and provide in this review an historical excursus of its evolution, from early neural tissue explants and organotypic cultures, to 2-D patient-derived cell monolayers, to the latest development of 3-D cerebral organoids. We have generated a comprehensive summary of CNS modelling techniques and approaches, protocol refinements throughout the course of decades and developments in the study of specific neuropathologies. Current limitations and caveats such as clonal variation, developmental stage, validation of pluripotency and chromosomal stability, functional assessment, reproducibility, accuracy and scalability of these models are also discussed
    corecore