42 research outputs found
Acinetobacter portensis sp. nov. and Acinetobacter guerrae sp. nov., isolated from raw meat
The taxonomic status of six strains of Acinetobacter obtained from meat samples, collected from supermarkets in Porto, Portugal, was investigated using polyphasic analysis. Partial rpoB sequence similarities lower than 95 % to other Acinetobacter species with validly published names led to the hypothesis that these strains represented novel species. This was confirmed based on comparative multilocus sequence analysis, which included the gyrB, recA and 16S rRNA genes, revealing that these strains represented two coherent lineages that were distinct from each other and from all known species. The names Acinetobacter portensis sp. nov. (comprising four strains) and Acinetobacter guerrae sp. nov. (comprising two strains) are proposed for these novel species. The species status of these two groups was confirmed by low (below 95 %) whole-genome sequence average nucleotide identity values and low (below 70 %) digital DNA–DNA hybridization similarities between the whole-genome sequences of the proposed type strains of each novel species and the representatives of the known Acinetobacter species. Phylogenomic treeing from core genome analysis supported these results. The coherence of each new species lineage was supported by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry differentiation of the species at the protein level, by cellular fatty acid profiles, and by unique and differential combinations of metabolic and physiological properties shared by each novel species. The type strain of A. portensis sp. nov. is AC 877T (=CCUG 68672T=CCM 8789T) and the type strain of A. guerrae sp. nov. is AC 1271T (=CCUG 68674T=CCM 8791T).info:eu-repo/publishedVersio
Plasmid- and strain-specific factors drive variation in ESBL-plasmid spread in vitro and in vivo
Horizontal gene transfer, mediated by conjugative plasmids, is a major driver of the global rise of antibiotic resistance. However, the relative contributions of factors that underlie the spread of plasmids and their roles in conjugation in vivo are unclear. To address this, we investigated the spread of clinical Extended Spectrum Beta-Lactamase (ESBL)-producing plasmids in the absence of antibiotics in vitro and in the mouse intestine. We hypothesised that plasmid properties would be the primary determinants of plasmid spread and that bacterial strain identity would also contribute. We found clinical Escherichia coli strains natively associated with ESBL-plasmids conjugated to three distinct E. coli strains and one Salmonella enterica serovar Typhimurium strain. Final transconjugant frequencies varied across plasmid, donor, and recipient combinations, with qualitative consistency when comparing transfer in vitro and in vivo in mice. In both environments, transconjugant frequencies for these natural strains and plasmids covaried with the presence/absence of transfer genes on ESBL-plasmids and were affected by plasmid incompatibility. By moving ESBL-plasmids out of their native hosts, we showed that donor and recipient strains also modulated transconjugant frequencies. This suggests that plasmid spread in the complex gut environment of animals and humans can be predicted based on in vitro testing and genetic data
Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth
Biodiversity and ecosystem service losses driven by land-use change are expected to intensify as a growing and more affluent global population requires more agricultural and forestry products, and teleconnections in the global economy lead to increasing remote environmental responsibility. By combining global biophysical and economic models, we show that, between the years 2000 and 2011, overall population and economic growth resulted in increasing total impacts on bird diversity and carbon sequestration globally, despite a reduction of land-use impacts per unit of gross domestic product (GDP). The exceptions were North America and Western Europe, where there was a reduction of forestry and agriculture impacts on nature accentuated by the 2007-2008 financial crisis. Biodiversity losses occurred predominantly in Central and Southern America, Africa and Asia with international trade an important and growing driver. In 2011, 33% of Central and Southern America and 26% of Africa's biodiversity impacts were driven by consumption in other world regions. Overall, cattle farming is the major driver of biodiversity loss, but oil seed production showed the largest increases in biodiversity impacts. Forestry activities exerted the highest impact on carbon sequestration, and also showed the largest increase in the 2000-2011 period. Our results suggest that to address the biodiversity crisis, governments should take an equitable approach recognizing remote responsibility, and promote a shift of economic development towards activities with low biodiversity impacts
Reply to: Soils need to be considered when assessing the impacts of land-use change on carbon sequestration
Industrial Ecolog
Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2
Publisher Copyright: © 2021 O'Toole Á et al.Late in 2020, two genetically-distinct clusters of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with mutations of biological concern were reported, one in the United Kingdom and one in South Africa. Using a combination of data from routine surveillance, genomic sequencing and international travel we track the international dispersal of lineages B.1.1.7 and B.1.351 (variant 501Y-V2). We account for potential biases in genomic surveillance efforts by including passenger volumes from location of where the lineage was first reported, London and South Africa respectively. Using the software tool grinch (global report investigating novel coronavirus haplotypes), we track the international spread of lineages of concern with automated daily reports, Further, we have built a custom tracking website (cov-lineages.org/global_report.html) which hosts this daily report and will continue to include novel SARS-CoV-2 lineages of concern as they are detected.Peer reviewe
[Avian cytogenetics goes functional] Third report on chicken genes and chromosomes 2015
High-density gridded libraries of large-insert clones using bacterial artificial chromosome (BAC) and other vectors are essential tools for genetic and genomic research in chicken and other avian species... Taken together, these studies demonstrate that applications of large-insert clones and BAC libraries derived from birds are, and will continue to be, effective tools to aid high-throughput and state-of-the-art genomic efforts and the important biological insight that arises from them
Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020
We show the distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three genomic nomenclature systems to all sequence data from the World Health Organization European Region available until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation, compare the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2
Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples
Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
Plasmid- and strain-specific factors drive variation in ESBL-plasmid spread in vitro and in vivo
Horizontal gene transfer, mediated by conjugative plasmids, is a major driver of the global rise of antibiotic resistance. However, the relative contributions of factors that underlie the spread of plasmids and their roles in conjugation in vivo are unclear. To address this, we investigated the spread of clinical Extended Spectrum Beta-Lactamase (ESBL)-producing plasmids in the absence of antibiotics in vitro and in the mouse intestine. We hypothesised that plasmid properties would be the primary determinants of plasmid spread and that bacterial strain identity would also contribute. We found clinical Escherichia coli strains natively associated with ESBL-plasmids conjugated to three distinct E. coli strains and one Salmonella enterica serovar Typhimurium strain. Final transconjugant frequencies varied across plasmid, donor, and recipient combinations, with qualitative consistency when comparing transfer in vitro and in vivo in mice. In both environments, transconjugant frequencies for these natural strains and plasmids covaried with the presence/absence of transfer genes on ESBL-plasmids and were affected by plasmid incompatibility. By moving ESBL-plasmids out of their native hosts, we showed that donor and recipient strains also modulated transconjugant frequencies. This suggests that plasmid spread in the complex gut environment of animals and humans can be predicted based on in vitro testing and genetic data.ISSN:1751-7362ISSN:1751-737