384 research outputs found
Resolving the contributions of the membrane-bound and periplasmic nitrate reductase systems to nitric oxide and nitrous oxide production in Salmonella enterica serovar Typhimurium
The production of cytotoxic nitric oxide (NO) and conversion into the neuropharmacological agent and potent greenhouse gas nitrous oxide (N2O) is linked with anoxic nitrate catabolism by Salmonella enterica serovar Typhimurium. Salmonella can synthesize two types of nitrate reductase: a membrane-bound form (Nar) and a periplasmic form (Nap). Nitrate catabolism was studied under nitrate-rich and nitrate-limited conditions in chemostat cultures following transition from oxic to anoxic conditions. Intracellular NO production was reported qualitatively by assessing transcription of the NO-regulated genes encoding flavohaemoglobin (Hmp), flavorubredoxin (NorV) and hybrid cluster protein (Hcp). A more quantitative analysis of the extent of NO formation was gained by measuring production of N2O, the end-product of anoxic NO-detoxification. Under nitrate-rich conditions, the nar, nap, hmp, norV and hcp genes were all induced following transition from the oxic to anoxic state, and 20% of nitrate consumed in steady-state was released as N2O when nitrite had accumulated to millimolar levels. The kinetics of nitrate consumption, nitrite accumulation and N2O production were similar to those of wild-type in nitrate-sufficient cultures of a nap mutant. In contrast, in a narG mutant, the steady-state rate of N2O production was ~30-fold lower than that of the wild-type. Under nitrate-limited conditions, nap, but not nar, was up-regulated following transition from oxic to anoxic metabolism and very little N2O production was observed. Thus a combination of nitrate-sufficiency, nitrite accumulation and an active Nar-type nitrate reductase leads to NO and thence N2O production, and this can account for up to 20% of the nitrate catabolized
An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in Bradyrhizobium japonicum
Rhizobia are recognized to establish N(2)-fixing symbiotic interactions with legume plants. Bradyrhizobium japonicum, the symbiont of soybeans, can denitrify and grow under free-living conditions with nitrate (NO(3)(−)) or nitrite (NO(2)(−)) as sole nitrogen source. Unlike related bacteria that assimilate NO(3)(−), genes encoding the assimilatory NO(3)(−) reductase (nasC) and NO(2)(−) reductase (nirA) in B. japonicum are located at distinct chromosomal loci. The nasC gene is located with genes encoding an ABC-type NO(3)(−) transporter, a major facilitator family NO(3)(−)/NO(2)(−) transporter (NarK), flavoprotein (Flp) and single-domain haemoglobin (termed Bjgb). However, nirA clusters with genes for a NO(3)(−)/NO(2)(−)-responsive regulator (NasS-NasT). In the present study, we demonstrate NasC and NirA are both key for NO(3)(−) assimilation and that growth with NO(3)(−), but not NO(2)(−) requires flp, implying Flp may function as electron donor to NasC. In addition, bjgb and flp encode a nitric oxide (NO) detoxification system that functions to mitigate cytotoxic NO formed as a by-product of NO(3)(−) assimilation. Additional experiments reveal NasT is required for NO(3)(−)-responsive expression of the narK-bjgb-flp-nasC transcriptional unit and the nirA gene and that NasS is also involved in the regulatory control of this novel bipartite assimilatory NO(3)(−)/NO(2)(−) reductase pathway
Insights Into the Formation and Diversification of a Novel Chiropteran Wing Membrane From Embryonic Development
BACKGROUND: Through the evolution of novel wing structures, bats (Order Chiroptera) became the only mammalian group to achieve powered flight. This achievement preceded the massive adaptive radiation of bats into diverse ecological niches. We investigate some of the developmental processes that underlie the origin and subsequent diversification of one of the novel membranes of the bat wing: the plagiopatagium, which connects the fore- and hind limb in all bat species.
RESULTS: Our results suggest that the plagiopatagium initially arises through novel outgrowths from the body flank that subsequently merge with the limbs to generate the wing airfoil. Our findings further suggest that this merging process, which is highly conserved across bats, occurs through modulation of the programs controlling the development of the periderm of the epidermal epithelium. Finally, our results suggest that the shape of the plagiopatagium begins to diversify in bats only after this merging has occurred.
CONCLUSIONS: This study demonstrates how focusing on the evolution of cellular processes can inform an understanding of the developmental factors shaping the evolution of novel, highly adaptive structures
The genomic epidemiology of Escherichia albertii
Escherichia albertii is a recently identified gastrointestinal bacterial pathogen of humans and animals which is typically misidentified and generally only detected during genomic surveillance of other Enterobacteriaceae. The incidence of E. albertii is likely underestimated and its epidemiology and clinical relevance are poorly characterised. Here, we whole genome sequenced E. albertii isolates from humans (n = 83) and birds (n = 79) in Great Britain and analysed a broader public dataset (n = 475) to address these gaps. We found human and avian isolates typically (90%; 148/164) belonged to host-associated monophyletic groups with distinct virulence and antimicrobial resistance profiles. Overlaid patient epidemiological data suggested that human infection was likely related to travel and possibly foodborne transmission. The Shiga toxin encoding stx2f gene was associated with clinical disease (OR = 10.27, 95% CI = 2.98–35.45 p = 0.0002) in finches. Our results suggest that improved future surveillance will further elucidate disease ecology and public and animal health risks associated with E. albertii
Evidence for overwintering and autochthonous transmission of Usutu virus to wild birds following its redetection in the United Kingdom
Usutu virus (USUV) is an emerging zoonotic arbovirus in Europe, where it primarily impacts Eurasian blackbirds (Turdus merula). For mosquito-borne viruses to persist in temperate areas, transovarial transmission in vectors or overwintering in either hosts or diapausing vectors must occur to facilitate autochthonous transmission. We undertook surveillance of hosts and vectors in 2021 to elucidate whether USUV had overwintered in the United Kingdom (UK) following its initial detection there in 2020. From 175 dead bird submissions, we detected 1 case of USUV infection, in a blackbird, from which a full USUV genome was derived. Using a molecular clock analysis, we demonstrate that the 2021 detection shared a most recent common ancestor with the 2020 Greater London, UK, USUV sequence. In addition, we identified USUV-specific neutralizing antibodies in 10 out of 86 serum samples taken from captive birds at the index site, demonstrating in situ cryptic infection and potential sustained transmission. However, from 4966 mosquitoes, we detected no USUV RNA suggesting that prevalence in the vector community was absent or low during sampling. Combined, these results suggest that USUV overwintered in the UK, thus providing empirical evidence for the continued northward expansion of this vector-borne viral disease. Currently, our detection indicates geographically restricted virus persistence. Further detections over time will be required to demonstrate long-term establishment. It remains unclear whether the UK, and by extension other high-latitude regions, can support endemic USUV infection
Tissue distribution of angiotensin-converting enzyme 2 (ACE2) receptor in wild animals with a focus on artiodactyls, mustelids and phocids
Natural cases of zooanthroponotic transmission of SARS-CoV-2 to animals have been reported during the COVID-19 pandemic, including to free-ranging white-tailed deer (Odocoileus virginianus) in North America and farmed American mink (Neovison vison) on multiple continents. To understand the potential for angiotensin-converting enzyme 2 (ACE2)-mediated viral tropism we characterised the distribution of ACE2 receptors in the respiratory and intestinal tissues of a selection of wild and semi-domesticated mammals including artiodactyls (cervids, bovids, camelids, suids and hippopotamus), mustelid and phocid species using immunohistochemistry. Expression of the ACE2 receptor was detected in the bronchial or bronchiolar epithelium of several European and Asiatic deer species, Bactrian camel (Camelus bactrianus), European badger (Meles meles), stoat (Mustela erminea), hippopotamus (Hippopotamus amphibious), harbor seal (Phoca vitulina), and hooded seal (Cystophora cristata). Further receptor mapping in the nasal turbinates and trachea revealed sparse ACE2 receptor expression in the mucosal epithelial cells and occasional occurrence in the submucosal glandular epithelium of Western roe deer (Capreolus capreolus), moose (Alces alces alces), and alpaca (Vicunga pacos). Only the European badger and stoat expressed high levels of ACE2 receptor in the nasal mucosal epithelium, which could suggest high susceptibility to ACE2-mediated respiratory infection. Expression of ACE2 receptor in the intestinal cells was ubiquitous across multiple taxa examined. Our results demonstrate the potential for ACE2-mediated viral infection in a selection of wild mammals and highlight the intra-taxon variability of ACE2 receptor expression, which might influence host susceptibility and infection
Global Law as Intercontextuality and as Interlegality
Since the 1990s the effects of globalization on law and legal developments has been a central topic of scholarly debate. To date, the debate is however marked by three substantial deficiencies which this chapter seeks to remedy through a reconceptualization of global law as a law of inter-contextuality expressed through inter-legality and materialized through a particular body of legal norms which can be characterized as connectivity norms.
The first deficiency is a historical and empirical one. Both critics as well as advocates of ‘non-state law’ share the assumption that ‘law beyond the state’ and related legal norms have gained in centrality when compared with previous historical times. While global law, including both public and private global governance law as well as regional occurrences such as EU law, has undergone profound transformations since the structural transformations which followed the de-colonialization processes of the mid-twentieth century, we do not have more global law relatively to other types of law today than in previous historical times.
The second deficiency is a methodological one. The vast majority of scholarship on global law is either of an analytical nature, drawing on insights from philosophy, or empirically observing the existence of global law and the degree of compliance with global legal norms at a given moment in time. While both approaches bring something to the table they remain static approaches incapable of explaining and evaluating the transformation of global law over time.
The third deficiency is a conceptual-theoretical one. In most instances, global law is understood as a unitary law producing singular legal norms with a planetary reach, or, alternatively, a radical pluralist perspective is adopted dismissing the existence of singular global norms. Both of these approaches however misapprehend the structural characteristics, function and societal effects of global law. Instead a third positon between unitary and radical pluralist perspectives can be adopted through an understanding of global law and its related legal norms as a de-centred kind of inter-contextual law characterised by inter-legality
Combining host and vector data informs emergence and potential impact of an Usutu virus outbreak in UK wild birds
Following the first detection in the United Kingdom of Usutu virus (USUV) in wild birds in 2020, we undertook a multidisciplinary investigation that combined screening host and vector populations with interrogation of national citizen science monitoring datasets to assess the potential for population impacts on avian hosts. Pathological findings from six USUV-positive wild passerines were non-specific, highlighting the need for molecular and immunohistochemical examinations to confirm infection. Mosquito surveillance at the index site identified USUV RNA in Culex pipiens s.l. following the outbreak. Although the Eurasian blackbird (Turdus merula) is most frequently impacted by USUV in Europe, national syndromic surveillance failed to detect any increase in occurrence of clinical signs consistent with USUV infection in this species. Furthermore, there was no increase in recoveries of dead blackbirds marked by the national ringing scheme. However, there was regional clustering of blackbird disease incident reports centred near the index site in 2020 and a contemporaneous marked reduction in the frequency with which blackbirds were recorded in gardens in this area, consistent with a hypothesis of disease-mediated population decline. Combining results from multidisciplinary schemes, as we have done, in real-time offers a model for the detection and impact assessment of future disease emergence events
Sequential screening for lung cancer in a high-risk group: randomised controlled trial: LungSEARCH: a randomised controlled trial of Surveillance using sputum and imaging for the EARly detection of lung Cancer in a High-risk group.
BACKGROUND: Low-dose computed tomography (LDCT) screening detects early-stage lung cancer and reduces mortality. We proposed a sequential approach targeted to a high-risk group as a potentially efficient screening strategy. METHODS: LungSEARCH was a national multicentre randomised trial. Current/ex-smokers with mild/moderate chronic obstructive pulmonary disease (COPD) were allocated (1:1) to have 5 years surveillance or not. Screened participants provided annual sputum samples for cytology and cytometry, and if abnormal were offered annual LDCT and autofluorescence bronchoscopy (AFB). Those with normal sputum provided annual samples. The primary end-point was the percentage of lung cancers diagnosed at stage I/II (nonsmall cell) or limited disease (small cell). RESULTS: 1568 participants were randomised during 2007-2011 from 10 UK centres. 85.2% of those screened provided an adequate baseline sputum sample. There were 42 lung cancers among 785 screened individuals and 36 lung cancers among 783 controls. 54.8% (23 out of 42) of screened individuals versus 45.2% (14 out of 31) of controls with known staging were diagnosed with early-stage disease (one-sided p=0.24). Relative risk was 1.21 (95% CI 0.75-1.95) or 0.82 (95% CI 0.52-1.31) for early-stage or advanced cancers, respectively. Overall sensitivity for sputum (in those randomised to surveillance) was low (40.5%) with a cumulative false-positive rate (FPR) of 32.8%. 55% of cancers had normal sputum results throughout. Among sputum-positive individuals who had AFB, sensitivity was 45.5% and cumulative FPR was 39.5%; the corresponding measures for those who had LDCT were 100% and 16.1%, respectively. CONCLUSIONS: Our sequential strategy, using sputum cytology/cytometry to select high-risk individuals for AFB and LDCT, did not lead to a clear stage shift and did not improve the efficiency of lung cancer screening
The effect of multiple internal representations on context rich instruction
This paper presents n-coding, a theoretical model of multiple internal mental
representations. The n-coding construct is developed from a review of cognitive
and imaging studies suggesting the independence of information processing along
different modalities: verbal, visual, kinesthetic, social, etc. A study testing
the effectiveness of the n-coding construct in an algebra-based mechanics
course is presented. Four sections differing in the level of n-coding
opportunities were compared. Besides a traditional instruction section used as
a control group, each of the remaining three treatment sections were given
context rich problems following the 'cooperative group problem solving'
approach which differed by the level of n-coding opportunities designed into
their laboratory environment. To measure the effectiveness of the construct,
problem solving skills were assessed as was conceptual learning using the Force
Concept Inventory. However, a number of new measures taking into account
students' confidence in concepts were developed to complete the picture of
student learning. Results suggest that using the developed n-coding construct
to design context rich environments can generate learning gains in problem
solving, conceptual knowledge and concept-confidence.Comment: Submitted to the American Journal of Physic
- …