913 research outputs found

    A possible dearth of hot gas in galaxy groups at intermediate redshift

    Get PDF
    We examine the X-ray luminosity of galaxy groups in the CNOC2 survey, at redshifts 0.1 < z < 0.6. Previous work examining the gravitational lensing signal of the CNOC2 groups has shown that they are likely to be genuine, gravitationally bound objects. Of the 21 groups in the field of view of the EPIC-PN camera on XMM-Newton, not one was visible in over 100 ksec of observation, even though three of the them have velocity dispersions high enough that they would easily be visible if their luminosities scaled with their velocity dispersions in the same way as nearby groups' luminosities scale. We consider the possibility that this is due to the reported velocity dispersions being erroneously high, and conclude that this is unlikely. We therefore find tentative evidence that groups at intermediate redshift are underluminous relative to their local cousins.Comment: 16 pages, 5 figures, reference added in section 1, typos corrected, published in Ap

    Habitable Climates: The Influence of Eccentricity

    Full text link
    In the outer regions of the habitable zone, the risk of transitioning into a globally frozen "snowball" state poses a threat to the habitability of planets with the capacity to host water-based life. We use a one-dimensional energy balance climate model (EBM) to examine how obliquity, spin rate, orbital eccentricity, and ocean coverage might influence the onset of such a snowball state. For an exoplanet, these parameters may be strikingly different from the values observed for Earth. Since, for constant semimajor axis, the annual mean stellar irradiation scales with (1-e^2)^(-1/2), one might expect the greatest habitable semimajor axis (for fixed atmospheric composition) to scale as (1-e^2)^(-1/4). We find that this standard ansatz provides a reasonable lower bound on the outer boundary of the habitable zone, but the influence of obliquity and ocean fraction can be profound in the context of planets on eccentric orbits. For planets with eccentricity 0.5, our EBM suggests that the greatest habitable semimajor axis can vary by more than 0.8 AU (78%!) depending on obliquity, with higher obliquity worlds generally more stable against snowball transitions. One might also expect that the long winter at an eccentric planet's apoastron would render it more susceptible to global freezing. Our models suggest that this is not a significant risk for Earth-like planets around Sun-like stars since such planets are buffered by the thermal inertia provided by oceans covering at least 10% of their surface. Since planets on eccentric orbits spend much of their year particularly far from the star, such worlds might turn out to be especially good targets for direct observations with missions such as TPF-Darwin. Nevertheless, the extreme temperature variations achieved on highly eccentric exo-Earths raise questions about the adaptability of life to marginally or transiently habitable conditions.Comment: References added, text and figures updated, accepted by Ap

    Habitable Climates

    Full text link
    According to the standard liquid-water definition, the Earth is only partially habitable. We reconsider planetary habitability in the framework of energy-balance models, the simplest seasonal models in physical climatology, to assess the spatial and temporal habitability of Earth-like planets. We quantify the degree of climatic habitability of our models with several metrics of fractional habitability. Previous evaluations of habitable zones may have omitted important climatic conditions by focusing on close Solar System analogies. For example, we find that model pseudo-Earths with different rotation rates or different land-ocean fractions have fractional habitabilities that differ significantly from that of the Earth itself. Furthermore, the stability of a planet's climate against albedo-feedback snowball events strongly impacts its habitability. Therefore, issues of climate dynamics may be central in assessing the habitability of discovered terrestrial exoplanets, especially if astronomical forcing conditions are different from the moderate Solar System cases.Comment: Accepted by ApJ. Several references added. 41 pages, 11 figures, 2 table

    Habitable Climates: The Influence of Obliquity

    Full text link
    Extrasolar terrestrial planets with the potential to host life might have large obliquities or be subject to strong obliquity variations. We revisit the habitability of oblique planets with an energy balance climate model (EBM) allowing for dynamical transitions to ice-covered snowball states as a result of ice-albedo feedback. Despite the great simplicity of our EBM, it captures reasonably well the seasonal cycle of global energetic fluxes at Earth's surface. It also performs satisfactorily against a full-physics climate model of a highly oblique Earth-like planet, in an unusual regime of circulation dominated by heat transport from the poles to the equator. Climates on oblique terrestrial planets can violate global radiative balance through much of their seasonal cycle, which limits the usefulness of simple radiative equilibrium arguments. High obliquity planets have severe climates, with large amplitude seasonal variations, but they are not necessarily more prone to global snowball transitions than low obliquity planets. We find that terrestrial planets with massive CO2 atmospheres, typically expected in the outer regions of habitable zones, can also be subject to such dynamical snowball transitions. Some of the snowball climates investigated for CO2-rich atmospheres experience partial atmospheric collapse. Since long-term CO2 atmospheric build-up acts as a climatic thermostat for habitable planets, partial CO2 collapse could limit the habitability of such planets. A terrestrial planet's habitability may thus depend sensitively on its short-term climatic stability.Comment: Minor changes, references added. 34 pages, 13 figures, accepted by Ap

    Implanted Satellite Transmitters Affect Sea Duck Movement Patterns at Short and Long Timescales

    Get PDF
    Studies of the effects of transmitters on wildlife often focus on survival. However, sublethal behavioral changes resulting from radio-marking have the potential to affect inferences from telemetry data and may vary based on individual and environmental characteristics. We used a long-term, multi-species tracking study of sea ducks to assess behavioral patterns at multiple temporal scales following implantation of intracoelomic satellite transmitters. We applied state-space models to assess short-term behavioral patterns in 476 individuals with implanted satellite transmitters, as well as comparing breeding site attendance and migratory phenology across multiple years after capture. In the short term, our results suggest an increase in dispersive behavior immediately following capture and transmitter implantation; however, behavior returned to seasonally average patterns within ~5 days after release. Over multiple years, we found that breeding site attendance by both males and females was depressed during the first breeding season after radio-marking relative to subsequent years, with larger relative decreases in breeding site attendance among males than females. We also found that spring and breeding migrations occurred later in the first year after radio-marking than in subsequent years. Across all behavioral effects, the severity of behavioral change often varied by species, sex, age, and capture season. We conclude that, although individuals appear to adjust relatively quickly (i.e. within 1 week) to implanted satellite transmitters, changes in breeding phenology may occur over the longer term and should be considered when analyzing and reporting telemetry data

    Spatially Explicit Network Analysis Reveals Multi‐Species Annual Cycle Movement Patterns of Sea Ducks

    Get PDF
    Conservation of long‐distance migratory species poses unique challenges. Migratory connectivity, that is, the extent to which groupings of individuals at breeding sites are maintained in wintering areas, is frequently used to evaluate population structure and assess use of key habitat areas. However, for species with complex or variable annual cycle movements, this traditional bimodal framework of migratory connectivity may be overly simplistic. Like many other waterfowl, sea ducks often travel to specific pre‐ and post‐breeding sites outside their nesting and wintering areas to prepare for migration by feeding extensively and, in some cases, molting their flight feathers. These additional migrations may play a key role in population structure, but are not included in traditional models of migratory connectivity. Network analysis, which applies graph theory to assess linkages between discrete locations or entities, offers a powerful tool for quantitatively assessing the contributions of different sites used throughout the annual cycle to complex spatial networks. We collected satellite telemetry data on annual cycle movements of 672 individual sea ducks of five species from throughout eastern North America and the Great Lakes. From these data, we constructed a multi‐species network model of migratory patterns and site use over the course of breeding, molting, wintering, and migratory staging. Our results highlight inter‐ and intra‐specific differences in the patterns and complexity of annual cycle movement patterns, including the central importance of staging and molting sites in James Bay, the St. Lawrence River, and southern New England to multi‐species annual cycle habitat linkages, and highlight the value of Long‐tailed Ducks (Calengula haemalis) as an umbrella species to represent the movement patterns of multiple sea duck species. We also discuss potential applications of network migration models to conservation prioritization, identification of population units, and integrating different data streams

    Unexpected diversity in socially synchronized rhythms of shorebirds

    Get PDF
    The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring). The behavioural rhythms that emerge from such social synchronization and the underlying evolutionary and ecological drivers that shape them remain poorly understood. Here we investigate these rhythms in the context of biparental care, a particularly sensitive phase of social synchronization where pair members potentially compromise their individual rhythms. Using data from 729 nests of 91 populations of 32 biparentally incubating shorebird species, where parents synchronize to achieve continuous coverage of developing eggs, we report remarkable within-and between-species diversity in incubation rhythms. Between species, the median length of one parent's incubation bout varied from 1-19 h, whereas period length-the time in which a parent's probability to incubate cycles once between its highest and lowest value-varied from 6-43 h. The length of incubation bouts was unrelated to variables reflecting energetic demands, but species relying on crypsis (the ability to avoid detection by other animals) had longer incubation bouts than those that are readily visible or who actively protect their nest against predators. Rhythms entrainable to the 24-h light-dark cycle were less prevalent at high latitudes and absent in 18 species. Our results indicate that even under similar environmental conditions and despite 24-h environmental cues, social synchronization can generate far more diverse behavioural rhythms than expected from studies of individuals in captivity. The risk of predation, not the risk of starvation, may be a key factor underlying the diversity in these rhythms.</p

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & NemĂ©sio 2007; Donegan 2008, 2009; NemĂ©sio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016
    • 

    corecore