80 research outputs found

    AUG sequences are required to sustain nonsense-codon-mediated suppression of splicing

    Get PDF
    More than 90% of human genes are rich in intronic latent 5′ splice sites whose utilization in pre-mRNA splicing would introduce in-frame stop codons into the resultant mRNAs. We have therefore hypothesized that suppression of splicing (SOS) at latent 5′ splice sites regulates alternative 5′ splice site selection in a way that prevents the production of toxic nonsense mRNAs and verified this idea by showing that the removal of such in-frame stop codons is sufficient to activate latent splicing. Splicing control by SOS requires recognition of the mRNA reading frame, presumably recognizing the start codon sequence. Here we show that AUG sequences are indeed essential for SOS. Although protein translation does not seem to be required for SOS, the first AUG is shown here to be necessary but not sufficient. We further show that latent splicing can be elicited upon treatment with pactamycin—a drug known to block translation by its ability to recognize an RNA fold—but not by treatment with other drugs that inhibit translation through other mechanisms. The effect of pactamycin on SOS is dependent neither on steady-state translation nor on the pioneer round of translation. This effect is found for both transfected and endogenous genes, indicating that SOS is a natural mechanism

    Pyrvinium pamoate changes alternative splicing of the serotonin receptor 2C by influencing its RNA structure

    Get PDF
    The serotonin receptor 2C plays a central role in mood and appetite control. It undergoes pre-mRNA editing as well as alternative splicing. The RNA editing suggests that the pre-mRNA forms a stable secondary structure in vivo. To identify substances that promote alternative exons inclusion, we set up a high-throughput screen and identified pyrvinium pamoate as a drug-promoting exon inclusion without editing. Circular dichroism spectroscopy indicates that pyrvinium pamoate binds directly to the pre-mRNA and changes its structure. SHAPE (selective 2\u27-hydroxyl acylation analysed by primer extension) assays show that part of the regulated 5\u27-splice site forms intramolecular base pairs that are removed by this structural change, which likely allows splice site recognition and exon inclusion. Genome-wide analyses show that pyrvinium pamoate regulates \u3e300 alternative exons that form secondary structures enriched in A-U base pairs. Our data demonstrate that alternative splicing of structured pre-mRNAs can be regulated by small molecules that directly bind to the RNA, which is reminiscent to an RNA riboswitch

    Supraspliceosomes at defined functional states portray the pre-assembled nature of the pre-mRNA processing machine in the cell nucleus

    Get PDF
    When isolated from mammalian cell nuclei, all nuclear pre-mRNAs are packaged in multi-subunit large ribonucleoprotein complexes—supraspliceosomes—composed of four native spliceosomes interconnected by the pre-mRNA. Supraspliceosomes contain all five spliceosomal U snRNPs, together with other splicing factors, and are functional in splicing. Supraspliceosomes studied thus far represent the steady-state population of nuclear pre-mRNAs that were isolated at different stages of the splicing reaction. To analyze specific splicing complexes, here, we affinity purified Pseudomonas aeruginosa phage 7 (PP7)-tagged splicing complexes assembled in vivo on Adenovirus Major Late (AdML) transcripts at specific functional stages, and characterized them using molecular techniques including mass spectrometry. First, we show that these affinity purified splicing complexes assembled on PP7-tagged AdML mRNA or on PP7-tagged AdML pre-mRNA are assembled in supraspliceosomes. Second, similar to the general population of supraspliceosomes, these defined supraspliceosomes populations are assembled with all five U snRNPs at all splicing stages. This study shows that dynamic changes in base-pairing interactions of U snRNA:U snRNA and U snRNA:pre-mRNA that occur in vivo during the splicing reaction do not require changes in U snRNP composition of the supraspliceosome. Furthermore, there is no need to reassemble a native spliceosome for the splicing of each intron, and rearrangements of the interactions will suffice

    Realising local government visions for developing district heating: experiences from a learning country

    Get PDF
    District heating (DH) has an important role to play in enabling cities to transition to low-carbon heating. Although schemes are commonplace in some countries, in ‘learning countries’ where building-level technologies make up the majority of heating systems there are numerous barriers to introducing DH. Local governments are seen as key actors in helping to create a ‘shared vision’ for DH amongst stakeholders. This study uses interviews with stakeholders from a range of sectors in the UK (an example of a learning country) to examine the visions of local actors for developing DH and the types of national policy that would support local implementation of these visions. The analysis shows that in engaging with DH development local governments seek multiple types of value. Realising this value will most likely happen by taking a long-term, planned approach to development. In contrast, national government policy is geared towards techno-economic criteria and may lead to only a minority of potential sites being developed, without realisation of wider social or environmental benefits aligned to local visions. The work highlights the importance of local strategic planning, enabled by aligned national policy, in realising the full economic, environmental and social benefits of DH

    FitEM2EM—Tools for Low Resolution Study of Macromolecular Assembly and Dynamics

    Get PDF
    Studies of the structure and dynamics of macromolecular assemblies often involve comparison of low resolution models obtained using different techniques such as electron microscopy or atomic force microscopy. We present new computational tools for comparing (matching) and docking of low resolution structures, based on shape complementarity. The matched or docked objects are represented by three dimensional grids where the value of each grid point depends on its position with regard to the interior, surface or exterior of the object. The grids are correlated using fast Fourier transformations producing either matches of related objects or docking models depending on the details of the grid representations. The procedures incorporate thickening and smoothing of the surfaces of the objects which effectively compensates for differences in the resolution of the matched/docked objects, circumventing the need for resolution modification. The presented matching tool FitEM2EMin successfully fitted electron microscopy structures obtained at different resolutions, different conformers of the same structure and partial structures, ranking correct matches at the top in every case. The differences between the grid representations of the matched objects can be used to study conformation differences or to characterize the size and shape of substructures. The presented low-to-low docking tool FitEM2EMout ranked the expected models at the top

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    • …
    corecore