282 research outputs found

    Requirements modelling and formal analysis using graph operations

    Get PDF
    The increasing complexity of enterprise systems requires a more advanced analysis of the representation of services expected than is currently possible. Consequently, the specification stage, which could be facilitated by formal verification, becomes very important to the system life-cycle. This paper presents a formal modelling approach, which may be used in order to better represent the reality of the system and to verify the awaited or existing system’s properties, taking into account the environmental characteristics. For that, we firstly propose a formalization process based upon properties specification, and secondly we use Conceptual Graphs operations to develop reasoning mechanisms of verifying requirements statements. The graphic visualization of these reasoning enables us to correctly capture the system specifications by making it easier to determine if desired properties hold. It is applied to the field of Enterprise modelling

    Two Nuclear Localization Signals in USP1 Mediate Nuclear Import of the USP1/UAF1 Complex

    Get PDF
    The human deubiquitinase USP1 plays important roles in cancer-related processes, such as the DNA damage response, and the maintenance of the undifferentiated state of osteosarcoma cells. USP1 deubiquitinase activity is critically regulated by its interaction with the WD40 repeat-containing protein UAF1. Inhibiting the function of the USP1/UAF1 complex sensitizes cancer cells to chemotherapy, suggesting that this complex is a relevant anticancer target. Intriguingly, whereas UAF1 has been reported to locate in the cytoplasm, USP1 is a nuclear protein, although the sequence motifs that mediate its nuclear import have not been functionally characterized. Here, we identify two nuclear localization signals (NLSs) in USP1 and show that these NLSs mediate the nuclear import of the USP1/UAF1 complex. Using a cellular relocation assay based on these results, we map the UAF1-binding site to a highly conserved 100 amino acid motif in USP1. Our data support a model in which USP1 and UAF1 form a complex in the cytoplasm that subsequently translocates to the nucleus through import mediated by USP1 NLSs. Importantly, our findings have practical implications for the development of USP1-directed therapies. First, the UAF1-interacting region of USP1 identified here might be targeted to disrupt the USP1/UAF1 interaction with therapeutic purposes. On the other hand, we describe a cellular relocation assay that can be easily implemented in a high throughput setting to search for drugs that may dissociate the USP1/UAF1 complex

    Post-traumatic upper cervical subluxation visualized by MRI: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper describes MRI findings of upper cervical subluxation due to alar ligament disruption following a vehicular collision. Incidental findings included the presence of a myodural bridge and a spinal cord syrinx. Chiropractic management of the patient is discussed.</p> <p>Case presentation</p> <p>A 21-year old female presented with complaints of acute, debilitating upper neck pain with unremitting sub-occipital headache and dizziness following a vehicular collision. Initial emergency department and neurologic investigations included x-ray and CT evaluation of the head and neck. Due to persistent pain, the patient sought chiropractic care. MRI of the upper cervical spine revealed previously unrecognized clinical entities.</p> <p>Conclusion</p> <p>This case highlights the identification of upper cervical ligamentous injury that produced vertebral subluxation following a traumatic incident. MRI evaluation provided visualization of previously undetected injury. The patient experienced improvement through chiropractic care.</p

    Functional Diversity and Structural Disorder in the Human Ubiquitination Pathway

    Get PDF
    The ubiquitin-proteasome system plays a central role in cellular regulation and protein quality control (PQC). The system is built as a pyramid of increasing complexity, with two E1 (ubiquitin activating), few dozen E2 (ubiquitin conjugating) and several hundred E3 (ubiquitin ligase) enzymes. By collecting and analyzing E3 sequences from the KEGG BRITE database and literature, we assembled a coherent dataset of 563 human E3s and analyzed their various physical features. We found an increase in structural disorder of the system with multiple disorder predictors (IUPred - E1: 5.97%, E2: 17.74%, E3: 20.03%). E3s that can bind E2 and substrate simultaneously (single subunit E3, ssE3) have significantly higher disorder (22.98%) than E3s in which E2 binding (multi RING-finger, mRF, 0.62%), scaffolding (6.01%) and substrate binding (adaptor/substrate recognition subunits, 17.33%) functions are separated. In ssE3s, the disorder was localized in the substrate/adaptor binding domains, whereas the E2-binding RING/HECT-domains were structured. To demonstrate the involvement of disorder in E3 function, we applied normal modes and molecular dynamics analyses to show how a disordered and highly flexible linker in human CBL (an E3 that acts as a regulator of several tyrosine kinase-mediated signalling pathways) facilitates long-range conformational changes bringing substrate and E2-binding domains towards each other and thus assisting in ubiquitin transfer. E3s with multiple interaction partners (as evidenced by data in STRING) also possess elevated levels of disorder (hubs, 22.90% vs. non-hubs, 18.36%). Furthermore, a search in PDB uncovered 21 distinct human E3 interactions, in 7 of which the disordered region of E3s undergoes induced folding (or mutual induced folding) in the presence of the partner. In conclusion, our data highlights the primary role of structural disorder in the functions of E3 ligases that manifests itself in the substrate/adaptor binding functions as well as the mechanism of ubiquitin transfer by long-range conformational transitions. © 2013 Bhowmick et al

    The 10 kDa domain of human erythrocyte protein 4.1 binds the Plasmodium falciparum EBA-181 protein

    Get PDF
    BACKGROUND: Erythrocyte invasion by Plasmodium falciparum parasites represents a key mechanism during malaria pathogenesis. Erythrocyte binding antigen-181 (EBA-181) is an important invasion protein, which mediates a unique host cell entry pathway. A novel interaction between EBA-181 and human erythrocyte membrane protein 4.1 (4.1R) was recently demonstrated using phage display technology. In the current study, recombinant proteins were utilized to define and characterize the precise molecular interaction between the two proteins. METHODS: 4.1R structural domains (30, 16, 10 and 22 kDa domain) and the 4.1R binding region in EBA-181 were synthesized in specific Escherichia coli strains as recombinant proteins and purified using magnetic bead technology. Recombinant proteins were subsequently used in blot-overlay and histidine pull-down assays to determine the binding domain in 4.1R. RESULTS: Blot overlay and histidine pull-down experiments revealed specific interaction between the 10 kDa domain of 4.1R and EBA-181. Binding was concentration dependent as well as saturable and was abolished by heat denaturation of 4.1R. CONCLUSION: The interaction of EBA-181 with the highly conserved 10 kDa domain of 4.1R provides new insight into the molecular mechanisms utilized by P. falciparum during erythrocyte entry. The results highlight the potential multifunctional role of malaria invasion proteins, which may contribute to the success of the pathogenic stage of the parasite's life cycle

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Australia's insurance crisis and the inequitable treatment of self-employed midwives

    Get PDF
    Based upon a review of articles published in Australia's major newspapers over the period January 2001 to December 2005, a case study approach has been used to investigate why, when compared with other small business operators, including medical specialists, Australian governments have appeared reluctant to protect the economic viability of the businesses of self-employed midwives. Theories of agenda setting and structuralism have been used to explore that inequity. What has emerged is a picture of the complex of factors that may have operated, and may be continuing to operate, to shape the policy agenda and thus prevent solutions to the insurance problems of self-employed midwives being found

    A Deubiquitylating Complex Required for Neosynthesis of a Yeast Mitochondrial ATP Synthase Subunit

    Get PDF
    The ubiquitin system is known to be involved in maintaining the integrity of mitochondria, but little is known about the role of deubiquitylating (DUB) enzymes in such functions. Budding yeast cells deleted for UBP13 and its close homolog UBP9 displayed a high incidence of petite colonies and slow respiratory growth at 37°C. Both Ubp9 and Ubp13 interacted directly with Duf1 (DUB-associated factor 1), a WD40 motif-containing protein. Duf1 activates the DUB activity of recombinant Ubp9 and Ubp13 in vitro and deletion of DUF1 resulted in the same respiratory phenotype as the deletion of both UBP9 and UBP13. We show that the mitochondrial defects of these mutants resulted from a strong decrease at 37°C in the de novo biosynthesis of Atp9, a membrane-bound component of ATP synthase encoded by mitochondrial DNA. The defect appears at the level of ATP9 mRNA translation, while its maturation remained unchanged in the mutants. This study describes a new role of the ubiquitin system in mitochondrial biogenesis
    corecore