144 research outputs found

    Developing Hyperpolarized 13C Spectroscopy and Imaging for Metabolic Studies in the Isolated Perfused Rat Heart

    Get PDF
    Hyperpolarized 13C magnetic resonance is a powerful tool for the study of cardiac metabolism. In this work, we have implemented protocols for the real-time hyperpolarized 13C investigation of Langendorff-perfused rat hearts using both non-selective non-localized spectroscopy and fast spectroscopic imaging. Following [1-13C] pyruvate infusion, we observed both catabolic and anaplerotic metabolic processes resulting in a number of metabolites, including bicarbonate, carbon dioxide, lactate, alanine and aspartate. Employing fast spectroscopic imaging, we were able to observe regional variations in pyruvate perfusion as well as in lactate and bicarbonate productio

    The Monitor project: JW 380 -- a 0.26, 0.15 Msol pre main sequence eclipsing binary in the Orion Nebula Cluster

    Full text link
    We report the discovery of a low-mass (0.26 +/- 0.02, 0.15 +/- 0.01 Msol) pre-main-sequence eclipsing binary with a 5.3 day orbital period. JW 380 was detected as part of a high-cadence time-resolved photometric survey (the Monitor project) using the 2.5m Isaac Newton Telescope and Wide Field Camera for a survey of a single field in the Orion Nebula Cluster (ONC) region in V and i bands. The star is assigned a 99 per cent membership probability from proper motion measurements, and radial velocity observations indicate a systemic velocity within 1 sigma of that of the ONC. Modelling of the combined light and radial velocity curves of the system gave stellar radii of 1.19 +0.04 -0.18 Rsol and 0.90 +0.17 -0.03 Rsol for the primary and secondary, with a significant third light contribution which is also visible as a third peak in the cross-correlation functions used to derive radial velocities. The masses and radii appear to be consistent with stellar models for 2-3 Myr age from several authors, within the present observational errors. These observations probe an important region of mass-radius parameter space, where there are currently only a handful of known pre-main-sequence eclipsing binary systems with precise measurements available in the literature.Comment: 11 pages, 9 figures, accepted for publication in MNRA

    Monitoring of In Vivo Function of Superparamagnetic Iron Oxide Labelled Murine Dendritic Cells during Anti-Tumour Vaccination

    Get PDF
    Dendritic cells (DCs) generated in vitro to present tumour antigens have been injected in cancer patients to boost in vivo anti-tumour immune responses. This approach to cancer immunotherapy has had limited success. For anti-tumour therapy, delivery and subsequent migration of DCs to lymph nodes leading to effective stimulation of effector T cells is thought to be essential. The ability to non-invasively monitor the fate of adoptively transferred DCs in vivo using magnetic resonance imaging (MRI) is an important clinical tool to correlate their in vivo behavior with response to treatment. Previous reports of superparamagnetic iron oxides (SPIOs) labelling of different cell types, including DCs, have indicated varying detrimental effects on cell viability, migration, differentiation and immune function. Here we describe an optimised labelling procedure using a short incubation time and low concentration of clinically used SPIO Endorem to successfully track murine DC migration in vivo using MRI in a mouse tumour model. First, intracellular labelling of bone marrow derived DCs was monitored in vitro using electron microscopy and MRI relaxometry. Second, the in vitro characterisation of SPIO labelled DCs demonstrated that viability, phenotype and functions were comparable to unlabelled DCs. Third, ex vivo SPIO labelled DCs, when injected subcutaneously, allowed for the longitudinal monitoring by MR imaging of their migration in vivo. Fourth, the SPIO DCs induced the proliferation of adoptively transferred CD4+ T cells but, most importantly, they primed cytotoxic CD8+ T cell responses to protect against a B16-Ova tumour challenge. Finally, using anatomical information from the MR images, the immigration of DCs was confirmed by the increase in lymph node size post-DC injection. These results demonstrate that the SPIO labelling protocol developed in this study is not detrimental for DC function in vitro and in vivo has potential clinical application in monitoring therapeutic DCs in patients with cancer

    Searching for the first Near-Earth Object family

    Full text link
    We report on our search for genetically related asteroids amongst the near-Earth object (NEO) population - families of NEOs akin to the well known main belt asteroid families. We used the technique proposed by Fu et al. (2005) supplemented with a detailed analysis of the statistical significance of the detected clusters. Their significance was assessed by comparison to identical searches performed on 1,000 'fuzzy-real' NEO orbit distribution models that we developed for this purpose. The family-free 'fuzzy-real' NEO models maintain both the micro and macro distribution of 5 orbital elements (ignoring the mean anomaly). Three clusters were identified that contain four or more NEOs but none of them are statistically significant at \geq 3{\sigma}. The most statistically significant cluster at the \sim 2{\sigma} level contains 4 objects with H < 20 and all members have long observational arcs and concomitant good orbital elements. Despite the low statistical significance we performed several other tests on the cluster to determine if it is likely a genetic family. The tests included examining the cluster's taxonomy, size-frequency distribution, consistency with a family-forming event during tidal disruption in a close approach to Mars, and whether it is detectable in a proper element cluster search. None of these tests exclude the possibility that the cluster is a family but neither do they confirm the hypothesis. We conclude that we have not identified any NEO families.Comment: 36 pages, 3 tables, 9 figures, accepted for publicatio

    A controlled cross-over study to evaluate the efficacy of improvised dry and wet emergency decontamination protocols for chemical incidents

    Get PDF
    The UK Initial Operational Response (IOR) to chemical incidents includes improvised decontamination procedures, which use readily available materials to rapidly reduce risk to potentially exposed persons. A controlled, cross-over human volunteer study was conducted to investigate the effectiveness of improvised dry and wet decontamination procedures on skin, both alone, and in sequence. A simulant contaminant, methyl salicylate (MeS) in vegetable oil with a fluorophore was applied to three locations (shoulder, leg, arm). Participants then received no decontamination (control) or attempted to remove the simulant using one of three improvised protocols (dry decontamination; wet decontamination; combined dry and wet decontamination). Simulant remaining on the skin following decontamination was quantified using both Gas Chromatography Tandem Mass Spectrometry (GC-MSMS) for analysis of MeS and UV imaging to detect fluorophores. Additionally, urine samples were collected for 24 hours following application for analysis of MeS. Significantly less simulant was recovered from skin following each improvised decontamination protocol, compared to the no decontamination control. Further, combined dry and wet decontamination resulted in lower recovery of simulant when compared to either dry or wet decontamination alone. Irrespective of decontamination protocol, significantly more simulant remained on the shoulders compared to either the arms or legs, suggesting that improvised decontamination procedures are less effective for difficult to reach areas of the body. There was no effect of decontamination on excreted MeS in urine over 24 hours. Overall, findings indicate that improvised decontamination is an effective means of rapidly removing contaminants from skin, and combinations of improvised approaches can increase effectiveness in the early stages of decontamination and in the absence of specialist resources at an incident scene. However, the variable control and consistency of improvised decontamination techniques means that further intervention is likely to be needed, particularly for less accessible areas of the body

    Precise Modeling of the Exoplanet Host Star and CoRoT Main Target HD 52265

    Full text link
    This paper presents a detailed and precise study of the characteristics of the Exoplanet Host Star and CoRoT main target HD 52265, as derived from asteroseismic studies. The results are compared with previous estimates, with a comprehensive summary and discussion. The basic method is similar to that previously used by the Toulouse group for solar-type stars. Models are computed with various initial chemical compositions and the computed p-mode frequencies are compared with the observed ones. All models include atomic diffusion and the importance of radiative accelerations is discussed. Several tests are used, including the usual frequency combinations and the fits of the \'echelle diagrams. The possible surface effects are introduced and discussed. Automatic codes are also used to find the best model for this star (SEEK, AMP) and their results are compared with that obtained with the detailed method. We find precise results for the mass, radius and age of this star, as well as its effective temperature and luminosity. We also give an estimate of the initial helium abundance. These results are important for the characterization of the star-planet system.Comment: 9 pages, 6 figures, 7 tables, to be published in Astronomy and Astrophysic
    corecore