119 research outputs found

    Therapeutic interleukin-6 blockade reverses transforming growth factor-beta pathway activation in dermal fibroblasts: insights from the faSScinate clinical trial in systemic sclerosis

    Get PDF
    OBJECTIVES: Skin fibrosis mediated by activated dermal fibroblasts is a hallmark of systemic sclerosis (SSc), especially in the subset of patients with diffuse disease. Transforming growth factor-beta (TGFβ) and interleukin-6 (IL-6) are key candidate mediators in SSc. Our aim was to elucidate the specific effect of IL-6 pathway blockade on the biology of SSc fibroblasts in vivo by using samples from a unique clinical experiment-the faSScinate study-in which patients with SSc were treated for 24 weeks with tocilizumab (TCZ), an IL-6 receptor-α inhibitor. METHODS: We analysed the molecular, functional and genomic characteristics of explant fibroblasts cultured from matched skin biopsy samples collected at baseline and at week 24 from 12 patients receiving placebo (n=6) or TCZ (n=6) and compared these with matched healthy control fibroblast strains. RESULTS: The hallmark functional and molecular-activated phenotype was defined in SSc samples and was stable over 24 weeks in placebo-treated cases. RNA sequencing analysis robustly defined key dysregulated pathways likely to drive SSc fibroblast activation in vivo. Treatment with TCZ for 24 weeks profoundly altered the biological characteristics of explant dermal fibroblasts by normalising functional properties and reversing gene expression profiles dominated by TGFβ-regulated genes and molecular pathways. CONCLUSIONS: We demonstrated the exceptional value of using explant dermal fibroblast cultures from a well-designed trial in SSc to provide a molecular framework linking IL-6 to key profibrotic pathways. The profound impact of IL-6R blockade on the activated fibroblast phenotype highlights the potential of IL-6 as a therapeutic target in SSc and other fibrotic diseases. TRIAL REGISTRATION NUMBER: NCT01532869; Post-results

    B Lymphocytes Regulate Dendritic Cell (Dc) Function in Vivo: Increased Interleukin 12 Production by DCs from B Cell–Deficient Mice Results in T Helper Cell Type 1 Deviation

    Get PDF
    Increasing evidence indicates that dendritic cells (DCs) are the antigen-presenting cells of the primary immune response. However, several reports suggest that B lymphocytes could be required for optimal T cell sensitization. We compared the immune responses of wild-type and B cell-deficient (μMT) mice, induced by antigen emulsified in adjuvant or pulsed on splenic dendritic cells. Our data show that lymph node cells from both control and μMT animals were primed, but each released distinct cytokine profiles. Lymph node T cells from control animals secreted interferon (IFN)-γ, interleukin (IL)-2, and IL-4, whereas those from μMT mice produced IFN-γ and IL-2 but no IL-4. To test whether B cells may influence the T helper cell type 1 (Th1)/Th2 balance by affecting the function of DCs, we immunized mice by transferring antigen-pulsed DCs from wild-type or mutant mice. Injection of control DCs induced the secretion of IL-4, IFN-γ, and IL-2, whereas administration of DCs from μMT animals failed to sensitize cells to produce IL-4. Analysis of IL-12 production revealed that DCs from μMT mice produce higher levels of IL-12p70 than do DCs from wild-type animals. These data suggest that B lymphocytes regulate the capacity of DCs to promote IL-4 secretion, possibly by downregulating their secretion of IL-12, thereby favoring the induction of a nonpolarized immune response

    A review of JAK-STAT signalling in the pathogenesis of spondyloarthritis and the role of JAK inhibition

    Get PDF
    Spondyloarthritis (SpA) comprises a group of chronic inflammatory diseases with overlapping clinical, genetic and pathophysiological features including back pain, peripheral arthritis, psoriasis, enthesitis and dactylitis. Several cytokines are involved in the pathogenesis of SpA, variously contributing to each clinical manifestation. Many SpA-associated cytokines, including IL-23, IL-17, IL-6, type I/II interferon and tumour necrosis factor signal directly or indirectly via the Janus kinase (JAK)–signal transducer and activator of transcription pathway. JAK signalling also regulates development and maturation of cells of the innate and adaptive immune systems. Accordingly, disruption of this signalling pathway by small molecule oral JAK inhibitors can inhibit signalling implicated in SpA pathogenesis. Herein we discuss the role of JAK signalling in the pathogenesis of SpA and summarize the safety and efficacy of JAK inhibition by reference to relevant SpA clinical trials

    T Cell–dependent Immune Response in C1q-deficient Mice: Defective Interferon γ Production by Antigen-specific T Cells

    Get PDF
    The role of the classical complement pathway in humoral immune responses was investigated in gene-targeted C1q-deficient mice (C1qA−/−). Production of antigen-specific immunoglobulin (Ig)G2a and IgG3 in primary and secondary responses to T cell–dependent antigen was significantly reduced, whereas IgM, IgG1, and IgG2b responses were similar in control and C1qA−/− mice. Despite abnormal humoral responses, B cells from C1qA−/− mice proliferated normally to a number of stimuli in vitro. Immune complex localization to follicular dendritic cells within splenic follicles was lacking in C1qA−/− mice. The precursor frequency of antigen-specific T cells was similar in C1qA−/− and wild-type mice. However, analysis of cytokine production by primed T cells in response to keyhole limpet hemocyanin revealed a significant reduction in interferon-γ production in C1qA−/− mice compared with control mice, whereas interleukin 4 secretion was equivalent. These data suggest that the classical pathway of complement may influence the cytokine profile of antigen-specific T lymphocytes and the subsequent immune response

    Selective Recruitment of Immature and Mature Dendritic Cells by Distinct Chemokines Expressed in Different Anatomic Sites

    Get PDF
    DCs (dendritic cells) function as sentinels of the immune system. They traffic from the blood to the tissues where, while immature, they capture antigens. They then leave the tissues and move to the draining lymphoid organs where, converted into mature DC, they prime naive T cells. This suggestive link between DC traffic pattern and functions led us to investigate the chemokine responsiveness of DCs during their development and maturation. DCs were differentiated either from CD34+ hematopoietic progenitor cells (HPCs) cultured with granulocyte/macrophage colony–stimulating factor (GM-CSF) plus tumor necrosis factor (TNF)-α or from monocytes cultured with GM-CSF plus interleukin 4. Immature DCs derived from CD34+ HPCs migrate most vigorously in response to macrophage inflammatory protein (MIP)-3α, but also to MIP-1α and RANTES (regulated on activation, normal T cell expressed and secreted). Upon maturation, induced by either TNF-α, lipopolysaccharide, or CD40L, DCs lose their response to these three chemokines when they acquire a sustained responsiveness to a single other chemokine, MIP-3β. CC chemokine receptor (CCR)6 and CCR7 are the only known receptors for MIP-3α and MIP-3β, respectively. The observation that CCR6 mRNA expression decreases progressively as DCs mature, whereas CCR7 mRNA expression is sharply upregulated, provides a likely explanation for the changes in chemokine responsiveness. Similarly, MIP-3β responsiveness and CCR7 expression are induced upon maturation of monocyte- derived DCs. Furthermore, the chemotactic response to MIP-3β is also acquired by CD11c+ DCs isolated from blood after spontaneous maturation. Finally, detection by in situ hybridization of MIP-3α mRNA only within inflamed epithelial crypts of tonsils, and of MIP-3β mRNA specifically in T cell–rich areas, suggests a role for MIP-3α/CCR6 in recruitment of immature DCs at site of injury and for MIP-3β/CCR7 in accumulation of antigen-loaded mature DCs in T cell–rich areas

    The successes and challenges of harmonising juvenile idiopathic arthritis (JIA) datasets to create a large-scale JIA data resource

    Get PDF
    Background CLUSTER is a UK consortium focussed on precision medicine research in JIA/JIA-Uveitis. As part of this programme, a large-scale JIA data resource was created by harmonizing and pooling existing real-world studies. Here we present challenges and progress towards creation of this unique large JIA dataset. Methods Four real-world studies contributed data; two clinical datasets of JIA patients starting first-line methotrexate (MTX) or tumour necrosis factor inhibitors (TNFi) were created. Variables were selected based on a previously developed core dataset, and encrypted NHS numbers were used to identify children contributing similar data across multiple studies. Results Of 7013 records (from 5435 individuals), 2882 (1304 individuals) represented the same child across studies. The final datasets contain 2899 (MTX) and 2401 (TNFi) unique patients; 1018 are in both datasets. Missingness ranged from 10 to 60% and was not improved through harmonisation. Conclusions Combining data across studies has achieved dataset sizes rarely seen in JIA, invaluable to progressing research. Losing variable specificity and missingness, and their impact on future analyses requires further consideration

    Synovial Tissue Heterogeneity in Rheumatoid Arthritis and Changes With Biologic and Targeted Synthetic Therapies to Inform Stratified Therapy

    Get PDF
    The treatment of rheumatoid arthritis (RA) has been transformed with the introduction of biologic disease modifying anti-rheumatic drugs (bDMARD) and more recently, targeted synthetic DMARD (tsDMARD) therapies in the form of janus-kinase inhibitors. Nevertheless, response to these agents varies such that a trial and error approach is adopted; leading to poor patient quality of life, and long-term outcomes. There is thus an urgent need to identify effective biomarkers to guide treatment selection. A wealth of research has been invested in this field but with minimal progress. Increasingly recognized is the importance of evaluating synovial tissue, the primary site of RA, as opposed to peripheral blood-based investigation. In this mini-review, we summarize the literature supporting synovial tissue heterogeneity, the conceptual basis for stratified therapy. This includes recognition of distinct synovial pathobiological subtypes and associated molecular pathways. We also review synovial tissue studies that have been conducted to evaluate the effect of individual bDMARD and tsDMARD on the cellular and molecular characteristics, with a view to identifying tissue predictors of response. Initial observations are being brought into the clinical trial landscape with stratified biopsy trials to validate toward implementation. Furthermore, development of tissue based omics technology holds still more promise in advancing our understanding of disease processes and guiding future drug selection
    corecore