3,597 research outputs found
The Pt isotopes: comparing the Interacting Boson Model with Configuration Mixing and the Extended Consistent-Q formalism
The role of intruder configurations in the description of energy spectra and
B(E2) values in the Pt region is analyzed. In particular, we study the
differences between Interacting Boson Model calculations with or without the
inclusion of intruder states in the even Pt nuclei Pt. As a result,
it shows that for the description of a subset of the existing experimental
data, i.e., energy spectra and absolute B(E2) values up to an excitation energy
of about 1.5 MeV, both approaches seem to be equally valid. We explain these
similarities between both model spaces through an appropriate mapping. We point
out the need for a more extensive comparison, encompassing a data set as broad
(and complete) as possible to confront with both theoretical approaches in
order to test the detailed structure of the nuclear wave functions.Comment: To be published in NP
Beam Test Performance and Simulation of Prototypes for the ALICE Silicon Pixel Detector
The silicon pixel detector (SPD) of the ALICE experiment in preparation at
the Large Hadron Collider (LHC) at CERN is designed to provide the precise
vertex reconstruction needed for measuring heavy flavor production in heavy ion
collisions at very high energies and high multiplicity. The SPD forms the
innermost part of the Inner Tracking System (ITS) which also includes silicon
drift and silicon strip detectors. Single assembly prototypes of the ALICE SPD
have been tested at the CERN SPS using high energy proton/pion beams in 2002
and 2003. We report on the experimental determination of the spatial precision.
We also report on the first combined beam test with prototypes of the other ITS
silicon detector technologies at the CERN SPS in November 2004. The issue of
SPD simulation is briefly discussed.Comment: 4 pages, 5 figures, prepared for proceedings of 7th International
Position Sensitive Detectors Conference, Liverpool, Sept. 200
Systematics of proton emission
A very simple formula is presented that relates the logarithm of the
half-life, corrected by the centrifugal barrier, with the Coulomb parameter in
proton decay processes. The corresponding experimental data lie on two straight
lines which appear as a result of a sudden change in the nuclear shape marking
two regions of deformation independently of the angular momentum of the
outgoing proton. This feature provides a powerful tool to assign experimentally
quantum numbers in proton emitters.Comment: 4 pages, 3 figure
Strange particle production in 158 and 40 GeV/ Pb-Pb and p-Be collisions
Results on strange particle production in Pb-Pb collisions at 158 and 40
GeV/ beam momentum from the NA57 experiment at CERN SPS are presented.
Particle yields and ratios are compared with those measured at RHIC.
Strangeness enhancements with respect to p-Be reactions at the same beam
momenta have been also measured: results about their dependence on centrality
and collision energy are reported and discussed.Comment: Contribution to the proceedings of the "Hot Quarks 2004" Conference,
July 18-24 2004, New Mexico, USA, submitted to Journal of Physics G 7 pages,
5 figure
Intruder bands and configuration mixing in the lead isotopes
A three-configuration mixing calculation is performed in the context of the
interacting boson model with the aim to describe recently observed collective
bands built on low-lying states in neutron-deficient lead isotopes. The
configurations that are included correspond to the regular, spherical states as
well as two-particle two-hole and four-particle four-hole excitations across
the Z=82 shell gap.Comment: 20 pages, 4 figures, accepted by PRC, reference added for section 1
in this revised versio
Strangeness enhancements at central rapidity in 40 A GeV/c Pb-Pb collisions
Results are presented on neutral kaon, hyperon and antihyperon production in
Pb-Pb and p-Be interactions at 40 GeV/c per nucleon. The enhancement pattern
follows the same hierarchy as seen in the higher energy data - the enhancement
increases with the strangeness content of the hyperons and with the centrality
of collision. The centrality dependence of the Pb-Pb yields and enhancements is
steeper at 40 than at 158 A GeV/c. The energy dependence of strangeness
enhancements at mid-rapidity is discussed.Comment: 15 pages, 10 figures and 3 tables. Presented at International
Conference on Strangeness in Quark Matter (SQM2009), Buzios, Rio de Janeiro,
Brazil, 27 Sept - 2 Oct 2009. Submitted to J.Phys.G: Nucl.Part.Phys, one
reference adde
High-K isomers in W and mechanisms of K-violation
An isomer, with t1/2 = 35 +- 10 ns and J, Kpi = 14, 14+, has been observed in the nucleus 176W using the reaction 150Nd(30Si,4n) at a beam energy of 133 MeV. The isomer exhibits an unusual pattern of decay in which the _majority_ of the flux proceeds directly to states with =0, bypassing available levels of intermediate K. This severe breakdown of normal K-selection rules in 176W is compared with recent observations of K-violation in neighboring nuclei, within the framework of proposed theoretical approaches. The available data on these K-violating decays seem to have a consistent explanation in models of K-mixing which include large-amplitude fluctuations of the nuclear shape
Rapidity distributions around mid-rapidity of strange particles in Pb-Pb collisions at 158 GeV/c
The production at central rapidity of K0s, Lambda, Xi and Omega particles in
Pb-Pb collisions at 158 A GeV/c has been measured by the NA57 experiment over a
centrality range corresponding to the most central 53% of the inelastic Pb-Pb
cross section. In this paper we present the rapidity distribution of each
particle in the central rapidity unit as a function of the event centrality.
The distributions are analyzed based on hydrodynamical models of the
collisions.Comment: 15 pages, 10 figure
INFN What Next: Ultra-relativistic Heavy-Ion Collisions
This document was prepared by the community that is active in Italy, within
INFN (Istituto Nazionale di Fisica Nucleare), in the field of
ultra-relativistic heavy-ion collisions. The experimental study of the phase
diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP)
deconfined state will proceed, in the next 10-15 years, along two directions:
the high-energy regime at RHIC and at the LHC, and the low-energy regime at
FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the
present and future programme of the ALICE experiment, the upgrade of which will
open, in the 2020s, a new phase of high-precision characterisation of the QGP
properties at the LHC. As a complement of this main activity, there is a
growing interest in a possible future experiment at the SPS, which would target
the search for the onset of deconfinement using dimuon measurements. On a
longer timescale, the community looks with interest at the ongoing studies and
discussions on a possible fixed-target programme using the LHC ion beams and on
the Future Circular Collider.Comment: 99 pages, 56 figure
Shell model in the complex energy plane and two-particle resonances
An implementation of the shell-model to the complex energy plane is
presented. The representation used in the method consists of bound
single-particle states, Gamow resonances and scattering waves on the complex
energy plane. Two-particle resonances are evaluated and their structure in
terms of the single-particle degreees of freedom are analysed. It is found that
two-particle resonances are mainly built upon bound states and Gamow
resonances, but the contribution of the scattering states is also important.Comment: 20 pages, 9 figures, submitted to Phys.Rev.
- …
