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Abstract

The role of intruder configurations in the description of energy spec-
tra and B(E2) values in the Pt region is analyzed. In particular,
we study the differences between Interacting Boson Model calculations
with or without the inclusion of intruder states in the even Pt nuclei
I72=194pt  As a result, it shows that for the description of a subset of
the existing experimental data, i.e., energy spectra and absolute B(E2)
values up to an excitation energy of about 1.5 MeV, both approaches
seem to be equally valid. We explain these similarities between both
model spaces through an appropriate mapping. We point out the need
for a more extensive comparison, encompassing a data set as broad (and
complete) as possible to confront with both theoretical approaches in
order to test the detailed structure of the nuclear wave functions.

PACS: 21.10.-k, 21.60.-n, 21.60.Fw.
Keywords: Pt isotopes, shape coexistence, intruder states, energy fits.

1 Introduction

The appearance of shape coexistence in nuclei has attracted a lot of atten-
tion in recent decades [1, 2, 3] and compelling evidence has been obtained,
in particular, at and very near to proton or neutron closed shells. The Pb
region takes a prominent position because in addition to specific shell-model
excitations established close to the N = 126 neutron shell closure, collective
excitations have been observed for the neutron-deficient nuclei [4]. The review



paper of Julin et al. [3] gives an extensive overview of the rich variety in nu-
clear excitation modes for both the Pb, Hg, Pt and, Po, Rn nuclei. Since the
publication of that paper, however, many experiments have been performed
highlighting properties of excited band structures and lifetimes for the Pb
nuclei [5, 6, 7, 8, 9, 10, 11, 12, 13] and nearby nuclei, also illuminating the
underlying mechanisms that are at the origin of the formation of collective
excitations in the neutron-deficient nuclei near to the Z = 82 proton closed
shell.

This mass region has been studied theoretically in an extensive way. Early
calculations using a deformed Woods-Saxon potential in order to explore the
nuclear energy surfaces as a function of the quadrupole deformation vari-
ables [14, 15, 16, 17] showed a consistent picture pointing out the presence
of oblate and prolate energy minima. More recently, mean-field calculations
going beyond the static part, including dynamical effects using the Genera-
tor Coordinate Method (GCM) [18], either starting from Skyrme functionals
[13, 19, 20, 21], or using the Gogny D1S parametrization [22, 23, 24, 25, 26|
have put the former calculations on firm ground and have also given rise to de-
tailed information of the collective bands observed in neutron-deficient nuclei
around the Z = 82 closed proton shell. Here, we should also mention attempts
to study shape transitions in the Os and Pt nuclei within the relativistic mean
field (RMF) approach [27].

. From a microscopic shell-model approach, the hope to treat on equal foot-
ing the large open neutron shell from N = 126 down to and beyond the
mid-shell N = 104 region, with valence protons in the Pt, Hg, Po, and Rn nu-
clei, and even including proton multi-particle multi-hole (mp-nh) excitations
across the Z = 82 shell closure, is far beyond present computational possibili-
ties. The truncation of the model space, however, by concentrating on nucleon
pair modes (mainly 0% and 2% coupled pairs, to be treated as bosons within
the Interacting Boson Approximation (IBM) [28]), has made the calculations
feasible, even including pair excitations across the Z = 82 shell closure [29] in
the Pb region. More in particular, the Pb nuclei have been extensively studied
giving rise to bands with varying collectivity depending on the nature of the
excitations treated in the model space [11, 30, 31, 32, 33, 34, 35, 36, 37].

In view of the fact that near the mid-shell point of the valence neutron
major shell 82 — 126 (N = 104) clear-cut examples (see the discussion before)
of coexisting collective bands have been observed in both the Pb (Z = 82)
and Hg (Z = 80) isotopes, it is of the utmost importance to study the prop-
agation of these coexisting structures as one gradually moves away from the
Z = 82 proton closed shell. Therefore, detailed studies for both the Pt, Os,...
isotopes (Z = 78,76,...) and the Po, Rn,... isotopes (Z = 84,86,...) are of
major importance in order to explore the evolution from coexisting spherical
and deformed structures at the closed shell towards the onset of normal, open-
shell deformation. In order to gain insight into this transition, one should,
in particular, study those observables that are sensitive to specific mp-nh ex-
citations such as the appearance of distinct collective bands making use, in
particular, of Coulomb excitation with radioactive beams, a-decay hindrance
factors, isotopic shifts, EO decay properties, g-factors. Moreover, data on low-



lying excited states in the adjacent odd-proton mass Au, TI, Bi,... isotopes
as well as in the odd-neutron mass Pt, Hg, Pb, Po, Rn isotopes should allow
to explore the importance of particular single-particle excitations in this mass
region. The Pt nuclei form a most important set of isotopes in order to study
the above question.

In the present paper, we reanalyze the Pt nuclei, motivated by the above
questions and recent IBM calculations [38, 39] without explicitly including
intruder excitations into the model space, considering the 4 proton holes and
the number of valence neutrons with the boson model approximation. Before,
it has been suggested by Wood [40, 41] that proton 6h-2p configurations must
be considered, besides the regular proton 4h configurations, in order to describe
the experimental data in the Pt and adjacent nuclei, in particular the sudden
lowering of the first excited 03 down to mass number A = 186 associated with a
specific change in the excitation energy for the first excited 2 state in the same
mass interval. Thus, it becomes clear that the Pt nuclei form a most important
series of isotopes in order to study the above question. More specifically, within
the IBM configuration-mixing approach [29] (IBM-CM for short), calculations
have been carried out for the Pt nuclei by Harder et al. [42] and by King et
al. [43] describing the low-lying excited states in the %719 Pt nuclei. In the
latter studies, also g(27) factors and isotopic shifts were calculated and shown
to be in good agreement with the known data [44, 45]. However, no B(E2)
values, which constitute an important test, were calculated.

We should mention that the even-even Pt around mass number A ~ 190
have been studied before in the framework of the proton-neutron interacting
boson model by Bijker et al. [46]. They calculated a large number of observ-
ables such as the energy spectra, various ratios of reduced E2 transition proba-
bilities, absolute B(FE2) values and quadrupole moments, two-nucleon transfer
reaction intensities, isotopic and isomeric shifts and EO transition rates. In
view of the fact that this study dates back to 1980, an extensive set of new
data have become available since. This warrants an in-depth study of the Pt
nuclei, spanning the region from the heavier Pt nuclei (around A ~ 196, 198)
into the lightest Pt nuclei near A ~ 172.

In the present study, we show that for the excited states below an excitation
energy of £, ~ 1.5 MeV, the IBM calculations with or without including ex-
plicitly particle-hole excitations reproduce equally well the excitation energies
and absolute B(E2) values of known states in the mass region 172 < A < 194.
How then can we interpret a possible equivalence of the energies, and the
B(E2) values for a limited number of states, below 1.5 MeV between both cal-
culations? This excitation energy approximately marks the start of a region
in which a unique comparison between a specific experimental level and a par-
ticular level in the IBM calculations becomes difficult to be made. First of all,
we point out that even though the Hilbert spaces of both models are largely
different, due to the limited number of states below 1.5 MeV, it is not possible
to discriminate between the models considering only excitation energies and
B(E2) values. Secondly, we point out that the difference in the Hamiltoni-
ans can result from a renormalization of the interaction. We also show that,
moving towards higher-lying levels, clear differences appear between the model



spaces. Moreover, we explore theoretical possibilities to understand the fact
that excitation energies and electromagnetic quadrupole properties (B(E2)
values and quadrupole moments) exhibit a very strong ressemblance, although
originating from highly different wave functions. In a forthcoming paper, we
shall present the results of a comparison covering an as complete as possible
data set (encompassing also a-decay hindrance factors, g(2]) factors, isotopic
shifts, EO decay properties, and also properties of the energy spectra of ad-
jacent odd-mass Pt and Au nuclei) with the two theoretical approaches, i.e.,
considering a reduced model space versus an enlarged model space including
particle-hole excitations, within the Interacting Boson Model context.
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Figure 1: Energy level systematics for Pt isotopes. Only levels up to £, ~ 1.5
MeV are shown.

2 The experimental data in the even-even Pt
nuclei

The even-even Pt nuclei, in particular the region of neutron-deficient isotopes
situated around and even beyond N = 104 neutron number (A = 182), span-
ning the mass interval 172 < A < 194, have been extensively studied over the
last decades. Information was taken from the appropriate Nuclear Data Sheets
covering the above Pt mass region for A = 172 [47], A = 174 [48], A = 176
[49], A = 178 [50], A = 180 [51], A = 182 [52], A = 184 [53], A = 186 [54],
A =188 [55], A =190 [56], A =192 [57] and, A = 194 [58]. Moreover, we also
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incorporate data on those even-even Pt nuclei that have been published (see
below) since the latest updates of the corresponding Nuclear Data Sheets.

The very light Pt nuclei with A = 168,170 were studied by King et al. [43]
using a-decay recoil tagging gamma spectroscopy. In the case of '"Pt, a
ground-state band up to spin (8") was established. Cederwall et al. [59] ob-
tained yrast bands for both "™12Pt up to spin (25/2%) and (8"), respectively.
Seweryniak et al. [60] also studied the "!17L172P¢ nuclei and in the case of
A = 172 could extend the yrast band structure up to spin (14"), using recoil
decay tagging. More recently, Joss et al. [61] studied the neutron-deficient
169=173Pt nuclei obtaining more detailed information on the yrast bands for
mass A = 170 and A = 172, and obtaining first information on side bands.
Extra information on '™Pt [62] and '™Pt [63] has been obtained making use
of the Gammasphere array, in particular, extending the yrast band up to spins
(26™7) and (24T), respectively. The yrast band in '™Pt was extended by So-
ramel et al. [64] up to spin (18") using fusion-evaporation reactions. Popescu
et al. [65], have studied the high-spin states (up to spin 26™) as well as the band
structures in *2Pt. A very detailed study was performed by Davidson et al. [66]
via 07 /EC decay using a gamma array to obtain both, yrast and non-yrast
structures covering the "~182Pt nuclei. In particular, the data for A = 178
and A = 182 extend the information compiled in the corresponding Nuclear
Data Sheets [50] and [52], respectively. In P, lifetime measurements have
been performed that allow to extract the B(E2;4] — 2{) value. The experi-
ment of De Voigt et al. [67] results in a value of 140£30 W.u. A more recent
experiment by Williams et al. [68] has resulted in a much larger B(E2) value
of 260+32 W.u. thus giving rise to non-overlapping data. The mass A = 184
Pt nucleus was studied by Xu et al. [69] in great detail, making use of the
3 decay of ¥ Au. Using both conversion electron and 7-ray spectroscopy as
well as y-ray angular distribution measurements on low-temperature oriented
(LTNO) *Au nuclei, EO p? values could be extracted demonstrating coex-
isting K=0 and K=2 bands. The high-spin states in %Pt nucleus have been
studied quite recently by Oktem et al. [70], going up to spin (207), and by Mc-
Cutchan et al. [71] studying low-spin states in %Pt populated in 47 /EC decay
of 12Au(17). Coulomb excitation experiments on %Pt by Wu et al. [72] have
resulted in an extensive set of reduced E2 matrix elements for the ground-band,
the K=2 band (encompassing both transition and diagonal matrix elements)
as well as for E2 transitions decaying from the 03, states.

The experimental energy systematics for the Pt nuclei, including the re-
gion of interest which is mainly situated around the neutron N = 104 mid-shell
number, is shown in Fig. 1 and spans the interval 178 < A < 198. The sys-
tematics is limited to levels with an excitation energy up to E, ~ 1.5 MeV
(a limited number of higher-spin states are given beyond this cut-off) and will
serve as a “basis” to compare with the calculations described in section 3. This
figure is based on the information available in the appropriate Nuclear Data
Sheets, enlarged or improved including the more recent papers discussing these
particular even-even Pt nuclei. Figure 1 is characterized by a sudden drop of
the first excited 03 state, down to mass A = 186, remaining essentially con-
stant for lower mass numbers (down to mass A = 178). The energy spectrum



remains remarkably constant in the mass interval 178 < A < 186, contrast-
ing with a different structure that shows a number of up sloping levels with
increasing mass number A beyond mass A = 186.
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Figure 2: Excitation energies resulting from an IBM-CM Hamiltonian, using
the parameters taken from Harder et al. [42]. Full lines with closed symbols
correspond to the regular states, while dashed lines with open symbols cor-
respond to the intruder states. Upper panel: calculation without the mixing
term, relative to the first regular 0% configuration. Lower panel: calculation
including the mixing term with a strength equal to 50 keV, relative to the 0"
state with the highest percentage of the regular N-boson subspace.

3 Comparing the Interacting Boson Model with
configuration mixing and the extended Consis-
tent-Q) formalism

3.1 The formalism

In the present study we compare calculations carried out within the context
of the IBM, incorporating 2p-2h excitations across the Z = 82 proton closed
shell into the model space (also called IBM-configuration mixing, or IBM-CM
as a shorthand notation), with recent studies using the standard IBM in which
excitations across the Z = 82 core are not included explicitly.

The IBM-CM allows the simultaneous treatment and mixing of several
boson configurations which correspond to different particle-hole (p-h) shell
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Figure 3: The regular configuration content, expressed by the weight w*(.J, V)
(see text), for the two lowest-lying states (k = 1,2) (full lines with
closed symbols are used for the first state while dashed lines with open
symbols are used for the second state) for each of the angular momenta
0F,2%,3%,4%,5%,6%, 7", 8%, corresponding to the lower panel of Fig. 2.

excitations [29]. On the basis of intruder spin symmetry [33, 73], no distinc-
tion is made between particle and hole bosons. Hence, the model space which
includes the regular proton 4h configurations and a number of valence neu-
trons outside of the N = 82 closed shell (corresponding to the standard IBM
treatment for the Pt even-even nuclei) as well as the proton 6h-2p configura-
tions and the same number of valence neutrons corresponds to a [N] & [V + 2]
boson space (IV, being the number of active protons, counting both, proton
holes and particles, plus the number of valence neutrons outside the N = 126
or the N = 82 closed shell (depending on the nearest closed shell), divided by
2 as the boson number). Consequently, the Hamiltonian for two-configuration
mixing can be written as

H = PYHY Py + Plyy (HYE + ANT) Py + Vi, (1)

cqf cqf mix

where Py and Py, are projection operators onto the [N] and the [N + 2]

boson spaces, respectively, ‘A/Ifl\i[;(N” describes the mixing between the [N] and
the [N + 2] boson subspaces, and
Fleicqf = giNg + Fé;f/ L+ Hi@(Xi) : @(Xi)v (2)

is the extended consistent-Q Hamiltonian (ECQF) [74] with i = N, N 4 2, n4
the d boson number operator,

L, =d" xdP, (3)

the angular momentum operator, and

Quixs) = [s" x d+d" x 5| + xild" x d|?) (4)

7



€ R | R Xi €;
N 540 | 0 | -27 | 0.25 | 0.16
N +2 0 10 | -22 | -0.45 | 0.13

Table 1: Hamiltonian and T'(E2) parameters from Harder et al. [42]. All the
quantities are given in keV, except for y; which are dimensionless and for the
effective charges, e;, which are given in e-b. The remaining parameters of the
Hamiltonian are: AN+2 = 1400 keV and wp ¥ ™2 = wy "V *? = 50 keV.

the quadrupole operator. We are not considering the most general IBM Hamil-
tonian in each Hilbert space, [N] and [N+2], but we are restricting ourselves to
an ECQF formalism [74, 75] in each subspace. This approach has been shown
to be a rather good approximation in many calculations.

The parameter AV*2 can be associated with the energy needed to excite
two particles across the Z = 82 shell gap, corrected for the pairing interaction
gain and including monopole effects [30, 76]. The operator Vé\{)’(NH describes
the mixing between the N and the N + 2 configurations and is defined as

VN2

mix

w2 (st x st + s % s) Fwd N (d x df + d x d)©. (5)
The wave function in the IBM-CM can then be described as follows
Uk, JM) = > ai(J; N)((sd)); JM)

+ Z BE(JT; N + 2)((sd) N2 TM) (6)

The E2 transition operator for two-configuration mixing is subsequently
defined as

A ~ N A

T(E2),= > ePlQ.0u)P (7)

i=N,N+2

where the e; (i = N, N + 2) are the effective boson charges and Qu(Xi) is the
quadrupole operator defined in Eq. (4).

The starting point of the present IBM-CM mixing analysis is the work
by Harder et al. [42], in which a schematic IBM mixing calculation with a
fixed Hamiltonian along the whole chain of the Pt nuclei was carried out. The
parameters used in that calculation are presented in Table 1.

Although these calculations were able to reproduce the evolution of the
structure of the low-lying states in a qualitative way, they do not allow for
a reproduction of the finer details. Besides, B(E2) values have not been cal-
culated in that study. In Fig. 2, we represent the major results from [42], in
particular the excitation energies, first without the mixing term and relative
to the first regular 0 state (upper panel) in which the behavior of the regular
and intruder states stands out clearly, and secondly, including a mixing term
equal to 50 keV (lower panel). In the lower panel of the figure, the energies



are given relative to the 07 state with the highest percentage of the regu-
lar N-boson subspace. In Fig. 3 we represent that part of the wave function
contained within the N-boson subspace, defined as the sum of the squared am-
plitudes, or weight w*(J, N) =3, | a¥(J; N) |?, of the two lowest-lying states
(k = 1,2) for the most important angular momentum values that show up in
the low-energy spectrum corresponding to the lower panel of Fig. 2.

Several features are highlighted by inspection of Figs. 2 and 3. First of
all, one observes a rapid change in the structure of the states, with the lowest
states resulting as mainly regular at the beginning (end) of the shell, while the
intruder character becomes dominant at the mid-shell, A = 182 (N = 104)
region. The first state for each L is mainly regular at the beginning (end)
of the shell, while mainly intruder at the mid-shell. For the second state the
situation is rather the opposite. It is mainly an intruder state at the beginning
(end) of the shell, while regular at the mid-shell region. In the case of the 5%
and 7T states, they behave over the whole mass-range as intruder states, with
a minimal content of the regular component at the mid-shell. Secondly, the
energy spectra are symmetric with respect to the mid-shell point at N = 104
with an unrealistic kink appearing at the mid-shell position, while the real
data do not exhibit such a pronounced behavior. As a conclusion, it turns out
that one would need a strong mixing term in order to approximately reproduce
the experimental data. Finally, it becomes clear that the parameters from [42]
should be fine tuned in order to reproduce the experimental data (excitation
energy and B(E2) values) quantitatively.

An alternative method to analyze this mass region was proposed recently
by McCutchan et al. [38], in which the Pt nuclei were treated as consisting of
just four proton holes and a number of valence neutrons, moving outside of
the Z = 82, N = 82 doubly-closed shell. Thus, proton excitations across the
Z = 82 closed shell were not taken into account explicitly. In this single-space
approach, considering N bosons, McCutchan et al. used the ECQF [74, 75]
with the Hamiltonian [77]

A(Q) = e((1— Qi — 55000-Q() (8)
where the quadrupole operator is given by Eq. (4). The parameter c¢ is a
general energy scaling factor, IV is the number of s and d bosons and ( and
X are two structural parameters, describing the spherical-deformed transition
and the prolate-oblate transition, respectively. Note that this Hamiltonian can
also be rewritten using the parameters €4 and x (see equation (2)).

In the present case, one considers a limited number of basis states, i.e., only
the components with /N bosons. This basis spans the smaller model space and

the corresponding model wave function can be expressed as
V' (k, JM) = a*(J; N)y((sd)]'s TM) . (9)
1
In section 3.2 we present the methods used in order to determine the pa-

rameters appearing in the IBM-CM Hamiltonian as well as in the T(EQ) opera-
tor. We discuss the resulting energy spectra and the B(FE2) reduced transition



probabilities, and carry out a detailed comparison with both, the experimental
data and with the ECQF calculations [38].

3.2 The fitting procedure: energy spectra and absolute
B(FE2) reduced transition probabilities

Here, we present the way in which the parameters of the Hamiltonian (1), (2),
and (5) and the effective charges in the T(E2) transition operator (7) have
been determined.

In order to compare with the calculations carried out by McCutchan et
al. [38], who studied besides the yrast levels, a number of non-yrast levels
and the corresponding B(FE2) values, we have to carry out a more detailed
calculation within the IBM-CM approach, going beyond the more schematic
study carried out by Harder et al. [42].

We concentrate on the range '™Pt to 4Pt thereby covering a major part
of the neutron N = 82 — 126 shell. This interval also corresponds to the same
set of isotopes analyzed in references [38] and [42].

In the fitting procedure carried out here, we try to obtain the best possible
agreement with the experimental data including both the excitation energies
and the B(E2) reduced transition probabilities. Using the expression of the
IBM-CM Hamiltonian, as given in equation (1), and of the E2 operator, as
given in Eq. (7), in the most general case thirteen parameters show up. We
impose a constraint of using parameters that change smoothly in passing from
isotope to isotope. For the regular Hamiltonian, we have constrained one of the
parameters, i.e., Yy = 0, while for the intruder Hamiltonian we have fixed the
relative d-boson energy to the value ey, o = 0. These constraints follow from
a number of test calculations that were carried out in which no substantial
improvement in the value of x? (see Eq. (10)) was obtained if we allowed
enye 7 0 or xy # 0. Note that the constraint ey, o = 0 is also supported
by [42]. On the other hand, we have kept the value that describes the energy
needed to create an extra particle-hole pair (2 extra bosons) constant, i.e.,
ANT2 = 1400 keV, and have also put the constraint of keeping the mixing
strengths constant, i.e., wév NH2 wév NH2 — 50 keV for all the Pt isotopes.
Those parameter values have been shown to be quite appropriate in this part
of the nuclear mass region [42, 43], although the choice of the mixing strength
remains somewhat arbitrary [42]. We also have to determine for each isotope
the effective charges of the E2 operator. This finally leads to eight parameters
to be varied in each nucleus.

The 2 test is used in the fitting procedure in order to extract the optimal
solution. The 2 function is defined in the standard way as

1 Naate (X;(data) — X;(IBM))?
2 _ ¢ G 10
X Ndata - Npar ; Ui2 ’ ( )

where Ngq, is the number of experimental data, N, is the number of pa-
rameters used in the IBM fit, X;(data) describes the experimental excitation
energy of a given experimental energy level (or an experimental B(E2) value),
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X;(IBM) denotes the corresponding calculated IBM-CM value, and o; is an
error assigned to each X;(data) point.

The 2 function is defined as a sum over all data points including excitation
energies as well as absolute B(E2) values. The minimization is carried out
using ey, Ky, KN, Kyie, KN42, XN+2, en and eyto as free parameters, having
fixed yy = 0, eyso = 0, AN2 = 1400 keV and wy " 72 = ws ¥ = 50 keV
as described before. We minimize the y? function for each isotope separately
using the package MINUIT [78] which allows to minimize any multi-variable
function. In some of the lighter Pt isotopes, due to the small number of
experimental data, the values of some of the free parameters could not be
fixed unambiguously using the above fitting procedure.

As input values, we have used the excitation energies of the levels presented
in Table 2. In this table we also give the corresponding o values. We stress
that the o values do not correspond to experimental error bars, but they are
related with the expected accuracy of the IBM-CM calculation to reproduce a
particular experimental data point. Thus, they act as a guide so that a given
calculated level converges towards the corresponding experimental level. The
o (0.1 keV) value for the 2] state guarantees the exact reproduction of this
experimental most important excitation energy, i.e., the whole energy spec-
trum is normalized to this experimental energy. As in reference [38], the states
41,03 and 23 are considered as the most important ones to be reproduced
(0 =1 keV). The group of states 43,44 ,67,8] and 3] (0 = 10 keV) and 2§
(0 =100 keV) should also be well reproduced by the calculation to guarantee a
correct moment of inertia for the yrast band and the structure of the pseudo-~
and 05 bands. In the case of the E2 transition rates, we have used the avail-
able experimental data involving the states presented in Table 2, restricted to
those E2 transitions for which absolute B(E2) values are known. Additionally
we have taken a value of o corresponding to 10% of these B(E2) values. In
view of the large number of relative B(E2) values, we have derived optimal
effective charges using the same fitting scheme as before, but now keeping the
parameters in the IBM-CM Hamiltonian fixed. Here, we include the relative
B(E2) values and for these data we have used a relative error of a 20%. The
experimental data that we have used are taken from the Nuclear Data Sheets
(NDS), Adopted Values references [47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58],
unless the latest issue was published more than 10 years ago. Therefore, for
the mass number A = 182,184 and 192, the experimental data were taken
from [66, 79, 71|, respectively.

The fitting procedure, outlined before, has resulted in the values of the
parameters for the IBM-CM Hamiltonian, as given in Table 3. Note that some
of the Hamiltonian parameters, especially for '?Pt and ™Pt, remain arbitrary
due to the lack of experimental data. In the case of 1Pt and 7Pt the value of
the effective charges cannot be determined because not a single B(E2) value is
known. In the case of '®2Pt the absolute value of the effective charges cannot
be determined because any absolute B(E2) value is known. Therefore, the
given values are dimensionless.

In the ECQF fit carried out by McCutchan et al. [38], the parameters they
obtained are given in Table 4 [80]. We present the values of ¢ and x and
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Precision (keV) States
7 =01 oF
o=1 45,05, 25
o=10 43,45 ,67,87, 37
o =100 o

Table 2: Energy levels, characterized by JT, included in the energy fit, if
known, and the assigned o values in keV.

Nucleus EN Ky KN Kigo | BN42 | XN+2 || en | enyo2
172p¢ 725.0 | 0.00 |-39.47 || 0.00 | -22.87 | -0.38 - -
174py 701.2 | 0.00 |-31.60 | 0.00 |-21.82 | -0.30 - -
176 pg 683.4 | 1.04 |-37.62 | 524 |-23.56|-0.75 || 1.86 | 1.63
178y, 753.8 | -2.31 | -37.45 || 5.27 | -25.17 | -0.55 || 3.21 | 1.52
180py, 999.3 | -15.14 | -37.34 || 6.57 | -25.14 | -0.32 || 1.29 | 1.94
182p¢ 939.9 | -6.70 | -35.39 || 7.03 | -23.50 | -0.31 1 1.1
184py 750.6 | 1.47 |-32.66 1| 6.64 | -23.89 | -0.34 || 1.14 | 1.71
186 py, 675.3 | 3.17 | -30.50 || 7.29 | -24.23 | -0.32 | 1.44 | 1.67
188 py, 483.2 | 4.94 | -37.38 | 6.67 |-31.47 | -0.11 || 1.66 | 1.66
190py 338.7 | 19.33 | -34.62 || 0.83 | -32.51 | 0.00 || 1.50 | 1.50
192py 314.9 | 12.01 | -45.32 || -8.82 | -38.84 | 0.00 || 1.68 | 1.77
194pg 370.9 | 6.67 |-38.26 | 6.52 |-31.02 | 0.00 || 1.97 | 0.25

Table 3: Hamiltonian and T(EQ) parameters resulting from the present study.
All quantities have the dimension of energy (given in units of keV), except
Xn~+2 Which is dimensionless and ey and ey o which are given in units v W.u.,
except for 182Pt which are dimensionless (see text). The remaining parameters

of the Hamiltonian, ¢.e., yy and enio
are equal to zero, except AV*2 = 1400 keV and wéV’N+2 = wéV’N” = 50 keV.
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Nucleus ¢ € K X e
172p¢ 0.49 || 856.9 | -25.7 | -1.20 -
17pt |1 0.51 || 811.6 | -23.5 | -1.10 | -
176pt || 0.47 || 480.8 | -10.7 | -1.10 | 2.22
18pt || 0.55 || 472.5 | -13.1 | -1.00 | 2.09
180pt 11 0.57 || 480.9 | -13.3 | -0.90 | 2.17
182pt 1 0.57 || 516.3 | -13.2 | -0.87 | -
184pt 11 0.57 || 480.0 | -13.3 | -0.84 | 1.90
186pt | 0.59 || 497.0 | -16.3 | -0.70 | 1.88
188pt |1 0.64 || 537.2 | -23.9 | -0.30 | 1.91
190pt 110.66 || 526.6 | -28.4 | -0.20 | 1.70
192pg 0.72 || 481.6 | -38.7 | -0.10 | 1.82
194pt 11 0.74 || 431.3 | -43.8 | -0.10 | 1.86

Table 4: ECQF Hamiltonian parameters and T(EQ) effective charge [38, 80].
All the quantities have the dimension of energy (units of keV), except ¢ and
x which are dimensionless, and e given in units v W.u. Note that ¢ is not an
independent variable, but depends on ¢ and k.

also the corresponding values of ¢ and k obtained after normalizing E(27)
to the experimental value. McCutchan et al. used the ratios E(47)/E(27),
E(27)/E(2]) and E(03)/E(27) as well as some B(E2) ratios, if known, such
as B(E2;25 — 07)/B(FE2;2§ — 21) and B(E2;24 — 07)/B(E2;2§ — 2]),
in order to determine the Hamiltonian parameters as given in equation (8).
The value of the effective charge of the T (E2) operator was fixed to repro-
duce B(E2;2] — 07) except for Pt where B(E2;4] — 2{) has been used.
The ECQF fit essentially consists of four free parameters to be varied in each
nucleus, separately, which is clearly less than in the IBM-CM calculations.

3.3 Comparing the IBM-CM and ECQF: energy spectra
and electric quadrupole properties

In the present subsection, we compare the energy spectra as obtained from
the IBM-CM and from the ECQF with the experimental energy spectra, for
the limited data set (with excitation energy F, less than ~ 1.5 MeV), so as to
be able to carry out a detailed comparison between both model calculations,
as well as between each of the calculations and the experimental data (see
Fig. 4). It becomes clear, by inspecting these results, that both approaches
seem equally good in describing the experimental energies up to an excitation
energy F, ~ 1.5 MeV, although, in general, the IBM-CM calculation provides
certain improvements with respect to the ECQF results. A striking result
is that the experimental energy spectra in "*~'86Pt are virtually identical,
pointing towards a common underlying collective structure.

A more detailed test of the content of the resulting wave functions comes
from the B(£2) reduced transition probabilities and from the electric quadrupole
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Figure 4: Experimental excitation energies (up to F, ~ 1.5 MeV) and theo-
retical results obtained from the IBM-CM and ECQF calculations [38].

moments. The trends for a number of important E2 transitions and for electric
quadrupole moments are presented in Figs. 5, 6, and 7. In Fig. 5, we show
the absolute B(E2) values for the yrast band. First of all, one observes close
similarities between both theoretical approaches and good agreement with the
experimental data (we show the two non-overlapping B(E2;4] — 27) experi-
mental values for ®°Pt). In particular, the increase in the B(E2) values with
increasing angular momentum .J, as well as a saturation near the higher spin
J = 8 value is well reproduced. Moreover, when moving from the lighter iso-
topes up to the mid-shell region a steady increase in the B(FE2) values shows
up, followed by a rather smooth decrease when moving towards the heavier Pt
isotopes. In Fig. 6, a number of interband B(FE2) values are plotted. Here,
some clear differences between IBM-CM and ECQF show up, especially for the
B(E2;25 — 07), B(E2;25 — 27) and B(E2;3] — 27) values in the lighter Pt
isotopes. Progressing towards the heavier isotopes, both approaches provide
overall similar results. In comparing with the scarce available experimental
data (only known for the heavier Pt isotopes), the agreement is satisfactory.
In Fig. 7, the quadrupole moments of some yrast and quasi-y band states are
given. In general, both theoretical approaches show the same variation with
angular momentum J and mass number A. Unfortunately, there exist very few
data to test this behavior: experimental quadrupole moments are only known
for the heavier 192191Pt isotopes [72, 81]. In the lighter isotopes, a negative
value of quadrupole moment for the yrast band state results, which is increas-
ing and approaches an almost vanishing value for the heavier Pt isotopes. For
the non-yrast 25, a positive quadrupole moment results, which is decreasing
in approaching the heavier isotopes. Both theoretical models result again in
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Figure 5: Comparison of a set of absolute B(E2) reduced transition probabil-
ities in the ground band, given in W.u. The left panel corresponds to known
experimental data, the central panel to the theoretical IBM-CM results and
the right panel to the theoretical ECQF results.

a similar behavior. For the non-yrast 43 state, the ECQF results in a more
smooth variation, changing sign between A = 186 and A = 188, as compared
with the IBM-CM results. Both descriptions tend towards a much reduced
quadrupole moment in the heavier isotopes. The main differences between
both approaches is that, in general, the ECQF generates a larger range for the
quadrupole moments (larger negative quadrupole moments for the yrast band
and 43 state) along the whole chain of isotopes and, the quadrupole moments
for the heavier isotopes become zero for the IBM-CM (for all J values) while
different from zero but having opposite signs with respect to the experimental
data in the ECQF'. This effect is a consequence of the differences in the val-
ues of y that were used in the IBM-CM (with yn and yn.2=0) and ECQF,
respectively.

In Tables 5 and 6 and in Tables 7, 8, 9, and 10, in appendix A, we compare
the experimental B(E2) values and the electric quadrupole moments with the
IBM-CM and ECQF theoretical results, respectively. For the absolute B(FE?2)
values (Table 5) we observe an overall similarity between both approaches and
a reasonably good agreement with the experimental data. In the case of 1Pt
the ECQF B(E2) values along the yrast band are between 15 — 20% larger
compared to the IBM-CM results and the data. In '8°Pt, 4Pt 192Pt, and
194Pt both theoretical approaches provide strongly similar values and good
agreement with the experimental data. However, in %*Pt, the E2 transitions
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Figure 6: Comparison of a set of absolute B(E2) reduced transition proba-
bilities, given in W.u. The left panel corresponds to experimental data, the
central panel to the IBM-CM results and the right panel to the ECQF results.

decaying from the 05 state into the 2{2 states show significant differences
between the ECQF and IBM-CM approach, as well as for the 0 to 2{ E2
transition. This may point towards a slightly better description of the structure
of the excited 0 and 0f states within the IBM-CM description. However,
both the ECQF and IBM-CM deviate strongly from the experimental value
for the 05 to 2§ E2 transition. Thus, it may also turn out that some of the
improvements of the IBM-CM over the ECQF could be related to the use of
two effective charges instead of one. Experiments to extract EO transition
rates decaying from these 07 states are therefore very important. The relative
B(E2) values are presented in Tables 7, 8, 9, and 10 in the appendix A in
view of the extensive character of that table. There, we give all data used
in order to extract these relative values starting from the intensities of -
transitions, specifying the decay of specific levels. Regarding the quadrupole
moments (Table 6), where experimental data are only available for 1927194Pt,
the IBM-CM predicts a vanishing quadrupole moments for all spin J states.
The ECQF predicts finite quadrupole moments but with a sign opposite to the
experimental one. The analysis of the data indicates that the Pt nucleus
corresponds to an oblate but quite y-soft structure [72]. The IBM-CM predicts
these nuclei as ~-unstable nuclei, while the ECQF describes them as prolate
nuclei. These data should allow for an improved description and constrain the
parameters in better way.

We now present in Figs. 8, 9, and 10 the energy spectra (up to E, =
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Isotope | Transition | Experiment | IBM-CM | ECQF
176p¢, 27 — 0f 87(8) 87 87
AF —2f | 163(15) 144 159
67 — 47 174(16) 183 199
8F — 67 | 192(25) 192 219
178pt, 47 —2f 195(18) 195 195
67 — 47 186(14) 199 230
8 — 67 206(23) 195 246
180p¢ 27 — 07 153(15) 153 153
4f — 2f 260(32) 247 245
140(30)
184p¢ 27 — 0f 112(5) 112 112
4f — 2f 210(8) 186 180
67 — 47 | 225(11) 220 212
8 — 67 280(30) 235 227
107 — 8F 300(50) 239 231
186p¢ 27 — 07 94(5) 94 94
188p¢ 27 — 07 82(15) 82 82
190p¢ 27 — 0f 56(3) 56 56
192p¢ 27 — 0f 57.1(12) 57 57
25 — 0f 0.54(4) 0.0 0.28
25 — 27 109(7) 80 74
37 — 47 38(9) 28 28
37— 27 102(10) 64 61
37— 2f 0.68(7) 0.0 0.44
4f — of 89(5) 79 79
67 — 47 70(30) 90 87
194p¢ 27 — 0f 49.2(8) 49.6 49
27 =07 | 0.29(4) 0.0 0.21
25 — 27 89(11) 66 63
4f — 2f 85(5) 66 67
43 — 4f 14 32 33
43 — 2f 0.36(7) 0.0 0.0
45 — 2% 21(4) 35 37
67 — 47 67(21) 67 72
03 — 27 0.63(14) 0.91 4.5
05 — 27 8.4(19) 9.2 39
05 — 2f 14.1(12) 14 0.02
0f — 25 14.3(14) 0.0 0.0

Table 5: Comparisons of the experimental absolute B(E2) values (given in
units of W.u.) with the IBM-CM Hamiltonian and the ECQF results [38].
Data are taken from the Nuclear Data Sheets [47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58], complemented with references presented in section 2.
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Figure 7: Comparison of the quadrupole moments for the ground band and the
23,45 states, given in units e-b. The left panel corresponds to experimental
data, the central panel to the IBM-CM results and the right panel to the ECQF
results.

1.5 MeV) in order to emphasize differences and similarities between the two
theoretical approaches.

In the case of '8Pt (Fig. 8), the yrast band is well described in both
calculations up to the 4 level, but slightly high in the IBM-CM while slightly
low in the ECQF for the higher-spin members. The 03 band is correctly
described in both approaches, although the band head is better reproduced
by the IBM-CM. The odd-even staggering is clearly better described by the
IBM-CM.

For 18Pt (see Fig. 9), the yrast band is correctly described in both ap-
proaches, IBM-CM and ECQF. The 0] band is rather well described by the
IBM-CM calculation even though the spacings in the band are too big com-
pared with the data. Using the ECQF approximation, the 0 band head lies
slightly high compared with the experimental position and here too, the en-
ergy spacings are too big compared with the data. For the pseudo-v band the
situation is quite similar, with a rather good IBM-CM description, i.e., band
head, moment of inertia and odd-even staggering. In the ECQF calculation,
the band head appears somewhat higher in excitation energy while the mo-
ment of inertia is slightly smaller than the experimental one, even though the
odd-even staggering is well reproduced.

The comparison for 24Pt is presented in Fig. 10. Here, we observe a good
description of the yrast band, including B(FE2) values, for both theoretical
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Figure 8: Detailed comparison, including excitation energies and absolute
B(E2) values, if known, between experimental data, IBM-CM and ECQF for
180Pt.

approaches. The position of the 0] state is correctly reproduced by both
calculations. The description of the pseudo-y band is only qualitatively repro-
duced by both approaches: the band head comes out too high, the even-odd
staggering is incorrect and the moment of inertia is too small. A similar ob-
servation results in the description of the 0 band, although, in this case the
band-head is better reproduced by the ECQF.

3.4 The intruder structure in the IBM-CM results

Having noticed the strong similarities in both excitation energy and B(E?2)
reduced transition probabilities considering the particular set of levels up to
~ 1.5 MeV, it is important to study in more detail the particular distribution
of the configurations containing N bosons (and thus also those with N + 2
bosons) as a function of the changing mass (neutron) number passing through
the Pt isotopes and for the various J™ values according to the energy spectra
as presented in Fig. 4. In Fig. 11, we present that part of the wave function
contained within the N-boson subspace, expressed by the weight w*(J, N), of
the two lowest-lying states (k = 1,2) for a given angular momentum. The
results obtained for the angular momentum 01,27 3% 4% states (left-hand
part) retain the major structure also observed in the calculations carried out
by Harder et al. [42] and also shown in the left-hand part of Fig. 3, although
now no longer symmetric with respect to the mid-shell point. The variation in
the weight of the N-boson content also exhibits a far more complex structure
between neutron (mass) number N = 110 (A = 188) and N = 116 (A = 194).
This fact is due to the specific values for the parameters characterizing the
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Figure 9: Detailed comparison, including excitation energies and absolute
B(E2) values, if known, between experimental data, IBM-CM and ECQF for
186Pt.

IBM-CM Hamiltonian for these isotopes. One notices a sudden increase in the
N-boson weight of the wave functions. For the higher-spin values 5%, 6%, 7%, 8",
the right-hand part of Fig. 11 shows serious differences when comparing to the
right-hand part of Fig. 3, in particular, for the second excited state of each of
the spin values shown. Just like for the left-hand part of the Fig. 11, a rather
complex structure results when passing in between neutron (mass) number
N =110 (A =188) and N = 116 (4 = 194).

In order to study more clearly the effects on the energy spectra, induced by
the mixing term, we recalculate the spectra using the Hamiltonian parameters
shown in Table 3, but now switching off the mixing term. The spectra are
presented in Fig. 12 where we show the two lowest regular and the lowest
intruder state for different angular momentum values. Here, we observe a
rather flat behavior of the energy for the regular states. The energy of the
intruder states is smoothly decreasing until the neutron mid-shell value at
N = 104, where it starts increasing again. This effect results mainly from the
smooth change of the Hamiltonian parameters when passing from isotope to
isotope.

A simultaneous analysis of Figs. 11 and 12, combined with the rules of a
simple two-level mixing model, allows us to explain the sudden increase of the
regular component for all J™ values at A = 188. In Fig. 12, the unperturbed
energies, i.e., excluding the mixing term, are plotted. Here, one observes the
close approach of pairs of regular and intruder states with a given angular
momentum, especially in the region around A = 188. The mixing term, cou-
pling the regular (N) and intruder (N + 2) configurations, can now result in
the interchange of character between the states and therefore in the sudden
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Isotope | State | Experiment | IBM-CM | ECQF
2py | 2f 0.6(2)° 0 -0.327
OIpt | 27 1 0.409(T%2)° 0 -0.288
47 1 0.751(F52)0 0 -0.308
67 | 0.195(1¥%)" 0 -0.284
87 | [0.06,0.28])" 0 -0.26
25 | -0.303(132)° 0 0.259
45 | -0.06(11) 0 0.09

Table 6: Comparison of the experimental quadrupole moments (given in e-b.)
with the IBM-CM Hamiltonian and the ECQF results [38]. Data are taken
from [81] (a) and [72] (b).

increase of the regular component content of the wave function. For states
with J > 4, the effect is even more dramatic because the unperturbed energy
of the intruder configuration always lies below the unperturbed energy of the
regular one and as a consequence, the interchange in character with the regular
configuration at the point of closest approach is enhanced. Eventually, moving
towards A = 194, the unperturbed energies of the intruder configurations are
moving up and cross the energies of the regular configurations. Therefore, as
shown in Fig. 11, from A = 194 onwards, the two lowest-lying states for each
J™ value have become regular (N-component, mainly) states.

4 Similarities and differences between the two
model spaces

As was already noticed in the calculations carried out by Harder et al. [42] and
in the calculations presented in section 3.2, there are a number of properties
in the Pt nuclei, such as excitation energies and B(E2) values for the set of
levels below ~ 1.5 MeV, that do not seem to be very sensitive to the use of
a smaller model space as compared to the use of a much larger model space
incorporating both regular and particle-hole excited intruder configurations,
explicitly. This can partly be expected because precisely those observables -
excitation energies, B(E2;27 — 07), B(E2;2§ — 07), and B(F2;25 — 2{)
- when experimentally known, were used in the fitting procedure in both the
IBM-CM and the ECQF calculations.

4.1 The energy spectra at high excitation energy: com-
paring the IBM-CM and ECQF

When comparing the IBM-CM calculations (which is using a model space that
contains both, N boson and N + 2 boson configurations) with the ECQF cal-
culations (which is using a model space with N bosons only), it is unavoidable
that moving up in excitation energy, at some point, clear-cut differences in
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Figure 10: Detailed comparison, including excitation energies and absolute
B(E2) values, if known, between experimental data, IBM-CM and ECQF for
194py

the density of states with given J” value should show up (the full dimension
in the IBM-CM more than doubles the one of the ECQF). It is interesting to
make the comparison between both. In Fig. 13, we illustrate this in the spe-
cific case of 18Pt (which is typical for all nearby nuclei), which is situated in a
region where a number of unperturbed configurations containing N and N + 2
bosons, respectively, appear at about the same unperturbed energy and thus
start a complex crossing pattern in the IBM-CM approach. In Fig. 13, one
observes that up to an excitation energy of about 2 MeV, there are no obvious
differences between the IBM-CM and the ECQF theoretical results. Above
this energy, different patterns are showing up. In particular in the IBM-CM
one observes a rather smooth distribution of levels, while in the ECQF the
energy levels appear more separated in blocks spaced by about 0.5 MeV. This
separation in blocks accentuates when increasing the value of the angular mo-
mentum. This turns out to be an indication that one is running out of model
space if one restricts to [IN] configurations only.

4.2 Eliminating the N+2 configurations: a mapping pro-
cedure

We point out that the very close resemblance of a part of the energy spectrum
(restricting to excitation energies below ~ 1.5 MeV) and corresponding B(E2)
values, can most probably be understood from a mapping of the larger model
space, used in the IBM-CM in which configurations with both N and N + 2
components are considered, onto the smaller space, used in the ECQF formula-
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Figure 11: The regular configuration content, expressed by the weight w*(.J, N)
(see text), for the two lowest-lying states (k = 1,2) for each J value (full lines
with closed symbols correspond with the first state while dashed lines with
open symbols correspond with the second state) resulting from the IBM-CM
calculation, as presented in Fig. 4.

tion, in which only the N boson configurations are kept. Thereby, an effective
Hamiltonian acting in the smaller space is defined through the mapping of the
lowest energy eigenvalues and similarly for the corresponding model transition
operators. We can describe the wave functions in the IBM-CM as follows

W (k, JM) Za (J; N)((sd)N; JM)

+ Zb§ Ji N 4+ 2))p((sd) Y2 TM) . (11)

We can also consider a limited number of basis states, i.e., only the com-
ponents with N bosons. This basis spans the smaller model space and the
corresponding model wave function can be expressed as

V'(k, JM) Za Y((sd)N; JM) | (12)

e., that part of the “true” wave function that lies within the small model
space. If we then require that the lowest energy eigenvalues Ei(JM), for the
large space, be reproduced exactly within the much smaller model space, one
can determine an effective Hamiltonian acting in the reduced model space
containing only configurations with N bosons by a mapping procedure

(W' (k, JM) | HF | W' (k, JM)) = E(k, JM) . (13)
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Figure 12: Energy spectra for the IBM-CM Hamiltonian presented in Table
3, switching off the mixing term. The two lowest-lying regular states and the
lowest-lying intruder state for each of the angular momenta are shown (full
lines with closed symbols for the regular states while dashed lines with open
symbols are used for the intruder states).

Using the projection operator P = Y,y | (sd)N: JM){((sd)N: JM |, which
projects onto the model space containing only N-boson configurations and
the operator Q = > ;cny2 | (sd)j”z;JMM(sd);y”;JM |, projecting onto
the N+2-boson model configurations, an effective Hamiltonian acting in the
reduced model space can be constructed [82] as

Q a

H =H+H .
E(k, JM) — HO

(14)

Although this formal procedure cannot easily be carried out starting from
the Hamiltonian used in the IBM-CM model space to construct the effective
Hamiltonian acting in the reduced model space with N bosons only, it seems
possible to show numerically that the procedure will work. Indeed, the low-
lying levels calculated in the IBM-CM model space up to E, ~ 1.5 MeV match
up very well with the corresponding levels using the ECQF calculation within
the N-boson model space, only. Considering the lowest-order diagrams that
follow from the expansion in Eq. (14), it can easily be seen that eliminating the
N+2 components implies changes in both the boson single-particle energies ¢,
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Figure 13: Comparison of the energy spectra for the IBM-CM and ECQF for
184Pt up to an excitation energy of E, ~ 5 MeV.

and g4 (see Fig. 14), as well as in the parameters k, £/, and x appearing in the
interaction part of the Hamiltonian. Work is in progress to try to carry out the
mapping for the most simple terms appearing in the IBM-CM Hamiltonian.

4.3 Observables and sensitivity to the enlarged model
space

The idea of comparing truncated model spaces with much larger model spaces
and the fact that a number of observables obtained in these model spaces
might still turn out to be very similar when comparing to experimental data
was illustrated a long time ago by Cohen, Lawson and Soper [83, 84]. By the-
oretically constructing a set of nuclei, called the Pseudonium nuclei *°~48Ps,
starting from a model space consisting of two degenerate 1ds/, and 1 f7 /5 single-
particle orbitals, containing between 4 and 12 neutrons and a given two-body
interaction (a Yukawa force was used), they showed that these energy spectra
interpreted as pseudo-data, could be fitted very well using a much restricted
model space consisting of the 1f;/, orbital only, now containing between 0 and
8 neutrons. It turned out that the effective interaction matrix elements, fitted
to the Pseudonium nuclei, was corresponding to quite a different interaction
than the force used at first in the larger model space. They moreover showed
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that other observables, such as B(E2) values for the strongest transitions, were
very similar even though the wave functions were very different. A different set
of Pseudonium nuclei were constructed making use of a model space consist-
ing of two degenerate 1p;/, and 1ds/, single-particle states that could contain
both protons and neutrons, up to maximally 12 nucleons. Very much the same
conclusion resulted when analyzing corresponding states using a model space
consisting of the 1ds/, orbital only [85]. In the latter study, it was pointed out
that quadrupole moments seemed to be a better observable to probe differ-
ences, with particularly chosen transfer reactions, becoming highly sensitive
to the use of different model spaces. It shows that a number of observables
(excitation energies, B(E2),...) are very insensitive to configuration mixing
arising from the excitation of zero-coupled pairs out of the closed shell. This
may turn out to be the same underlying mechanism in our present IBM-CM
study.

This study of the actual wave function content and the way to test it has,
more recently, been explored, e.g., in the study of the nucleus *°Ca [86]. It turns
out that the 07 ground state only consists of 65% closed sd shell (or Op-Oh) and
exhibits 29% of 2p-2h excitations out of the 252, 1d3/2 normally filled orbitals
into the 1f7/2,2p3/2,1f5/2,2p1/2 higher-lying orbitals, even containing up to
5% of 4p-4h excitations. This large model space is effectively needed in order
to describe the higher-lying strongly deformed bands and superdeformation as
experimentally observed in °Ca. A study of isotopic shifts in the even-even Ca
nuclei, moving from A = 40 to A = 48 could be reproduced well by including
explicitly, mp-nh excitations across the Z = 20, N = 20 "closed” shell, using
a slightly smaller model space than the one used before [87]. This points
out that one can indeed find observables that are sensitive to the important
components of the wave function and thus be able to discriminate between
various approaches that give quite similar results when restricting to a subset
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of data, only.

Therefore, in a forthcoming paper, we shall compare the results of both,
the IBM-CM and ECQF calculations with a data set that encompasses be-
sides excitation energies and B(E2) values also quadrupole moments, g(27)
values, a-decay hindrance factors, isotopic shifts, p? values extracted from EO
transitions, as well as results derived from properties characterizing the energy
spectra and EO transitions in the adjacent odd-mass nuclei. Transfer reactions
are most probably one of the best tests to explore the detailed composition
of the nuclear wave function. They have been shown to be able to detect
the presence of core-excited configurations in different mass regions. Such a
comparison should allow to compare the nuclear wavefunctions derived in the
smaller N space with the wavefunctions containing both N and N+2 configu-
rations (inclusion of particle-hole excitations, explicitly).

5 Conclusions

In the present study, we have analyzed certain aspects related to the role
of intruder excitations in the Pt isotopes. To start with, we have presented
the experimental knowledge in this mass region on energy spectra and absolute
B(E2) values, however restricting to an excitation energy up to 1.5 MeV. Next,
we have performed a set of IBM-CM calculations for the isotopes 1727194Pt
and compared them with previous ECQF calculations, noticing that for the
subset of states below &~ 1.5 MeV, both descriptions are roughly comparable.
However, if one extends both calculations up to 5 MeV, differences in the
distribution of the theoretical levels start to show up. We have suggested
that the similarities between both model spaces can be explained through
an appropriate mapping with a low-energy cut-off in the excitation energy of
~ 1.5 MeV. This mapping may shed light on the way to extract the parameters
that appear in the smaller model space (which amounts to four in the ECQF
study) starting from the larger model space, containing in the present IBM-
CM approach eight free parameters. We have also made reference to earlier
studies by Cohen, Lawson and Soper, carried out within the context of the
nuclear shell-model, where it was shown that calculated energy spectra and
other observables, using a given model space and two-body interaction in the
case of strong mixing, can be fitted very well using a restricted model space
and an effective or renormalized interaction. They showed the insensitivity of a
number of observables (such as excitation energies and B(E2) values) to strong
configuration mixing arising from the excitation of 0™ coupled pairs out of a
closed shell. These studies stressed the need to detect (i) all states (complete
spectroscopy) as well as, (ii) the importance to study specific observables in
order to probe the nuclear wavefunction in greater detail.

The fact that for the neutron-deficient Pb and Hg nuclei, a fit using the
smaller model space cannot be obtained (in particular the low-lying 05 en-
ergies) [38] is particularly relevant in this respect. It shows that in the case
of weak mixing between the regular low-lying configurations (N-space) and
particle-hole (p-h) pair excitations across Z = 82 closed shell (N+2,... space),
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the intruder states are clearly visible and exhibit a distinct energy system-
atics. This points out the need to consider a model space containing both
regular and p-h pair configurations. However, in situations where the p-h pair
excitations appear at nearly the same unperturbed energy as the regular ex-
citations and strong mixing follows, the observed excitation energies do not
show any more such a distinct separation. Still, the excitation energies and
electric quadrupole properties for states below E, =~ 1.5 MeV are very sim-
ilar using the larger and the smaller model space, excluding p-h degrees of
freedom, explicitely (section 3.3 and section 3.4). This is a most interesting
result, in view of the highly-different wave functions that enter the calcula-
tions and may be understood constructing the mapping referred to before.
Moreover, the arguments put forward in the study of the Pseudonium nuclei
by Cohen, Lawson and Soper of concealed configuration mixing of 0% coupled
pairs, are interesting in the prospect of accomplishing a mapping. Work is in
progress on this important issue. Moreover, in a forthcoming paper, we shall
present the results of a comparison covering an as complete as possible data
set (encompassing also, e.g., a-decay hindrance factors, g(2{) factors, isotopic
shifts, EO decay properties, as well as properties in the spectra of neighboring
odd-mass Pt and Au nuclei) with the two theoretical approaches, i.e., consid-
ering a reduced model space versus a larger model space including particle-hole
excitations explicitly, within the Interacting Boson Model context. Transfer
reactions may prove to be very effective in showing the detailed structure of
the nuclear wave functions.
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A Appendix: Relative B(E?2) values in 13'7191Pt

Since the number of absolute B(E2) values known in the 8°=19Pt nuclei is
quite restricted, we also cover relative B(FE2) values. Extracting those relative
values, one needs detailed information on the y-ray intensities for the transi-
tions originating from a given initial state. In order to do so, we have made
use of the adopted values given in the most recent volume of the Nuclear Data
Sheets (NDS), covering the mass range from A = 180 up to A = 194 and are
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taken from [51] (A = 180), [54] (A = 186), [55] (A = 188), [56] (A = 190), [57]
(A =192) and [58] (A = 194). In a number of cases, i.e., when the latest issue
of NDS was published more than 10 years ago, we have taken data from recent
literature. This was the case for A = 182 ([52] dates from 1995), in which case
the necessary data were taken from a study of Davidson et al. [66] and also
for A = 184 with the NDS dating to 1989 [53]. In the latter case, we have
used the update on ®Pt, kindly supplied by Baglin [79], information which
will soon be published in a forthcoming issue of NDS. For A = 192, we have,
for the transitions decaying from the 23 level, taken the data from McCutchan
et.al. [T1].

We have taken from these data the transition energies, intensities and cor-
responding errors. In the table that follows, we also give the evaluated infor-
mation on multipolarities in situations where one can expect that besides E2
transitions, M1 transitions and, in situations where J; = Jy, also EQ transi-
tions can contribute. Thereby we follow the conventions used by the evaluators
of NDS: (...) stands for very strong indications for the multipolarities given
between parenthesis, [ ]| stands for multipolarities deduced from information
on the decay scheme, even compelling, but not measured, (Q) or Q stands
for a transitions with quadrupole multipolarity, but no unambigous parity in-
formation known. In a number of cases, 6(£2/M1) mixing ratios have been
measured and are given. In a number of transitions that have been taken as
a reference transition to derive the relative B(E2) values, but might contain
M1 admixtures, we explicitely mention if a mixing ratio is know. In a number
of situations such as the 25 — 27 transition, the E2 assignment in NDS, even
with the mixing ratio unknown, is made on the basis of measured conversion
coefficients, excluding important M1 admixtures. For all nuclei considered
here, we have assumed this particular transition to be £E2, so the numbers de-
duced from that may carry a given “uncertainty” with them. Something quite
similar occurs for the 3] — 2, transition, which has (if present) been taken
as the reference transition when deriving relative B(E2) values. In a num-
ber of cases, the mixing ratio helps substantially in deciding to fix a reference
transition in order to derive relative B(E2) values.

Using the criteria discussed before, we have extracted the experimental
relative B(E2) values (with error). The expression used is given by

I’y E:"/ef 5 1 + 621f
B(E2) = 100 x ( — ) X ( ) X =L (15)
e E, 1+ 5
where ref stands for the reference transition.
The related errors are given by the expression

A(B(E2)) = B(E2)
(%?)2 + (Aggf)f +4 (&)2 +4 <%:;f)>2, (16)

where A() stands for the absolute error.
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Here, the relative errors for both the reference transition, the one that
is taken as the relative transition, as well as the relative errors on mixing
ratios (again for the reference transition and the one that is taken as the
relative transition), if the latter are available, have to be taken into account in
a quadratic way. Note that we did not include the contribution from the error
of the gamma energies because they are negligible.

We have compared in Tables 7, 8, 9, and 10 the experimental relative B(E2)
values with the calculated values using the IBM-CM and ECQF.

A first remark concerns the comparison between the calculated values:
IBM-CM and ECQF. There appears an overall agreement on the structure
of very strong, intermediate strength and weak relative B(£2) values, which
holds for the whole region presented in the extensive table. There are a num-
ber of cases, such as in Pt (for the decay from the 2 and 43 levels) and
in 18Pt (again decay from the 2 level) where large deviations show up. We
consider here 121 transitions.

Very much the same conclusion holds when comparing with the experi-
mental relative B(E2) values: for most of the transitions, the scale of strong,
intermediate strength and weak seems to remain intact in comparing with the
theoretical descriptions.
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Transition | E, L, Mult. ) Exp. IBM-CM | ECQF
(keV)

B0pg [ 2f — 0F | 199 5(2) 630(250) 84 120
25 — 47 | 207 | 0.9(5) 26(15) 13 20
25 — 2 | 524 | 100(2) E0+E2 <-11 100 100 100
25 —0F | 678 | 35(3) 9.7(9) 4.5 6
2F —2F | 184 | 1.1(6) <304 158 158
2F =07 | 383 | 14(2) 100 100 100
2F —4f | 451 | 18(2) 57(10) 44 50
25 — 27 | 708 | 15(2) E0-+M1+E2 2.073¢ 4.0730 3.2 0.5
25 — 0f | 861 | 100(2) 12.4(1.8) 13 10
37 =27 | 286 | 3.5(7) * Unknown 100 100 100
3r —4f | 552 | 13(2) <14 17 17
3r — 27 | 889 | 100(2) E2 <-13 16(3) 11 9
=27 | 312 | 15(4) 100 100 100
4f — 47 | 639 | 100(13) 45(13) 35 25
4f -2 | 896 | 17(8) 1.4(8) 0.1 0.2
07 — 23 | 500 | 13(8) 100 100 100
05 —2F | 1024 | 100(10) 21(13) 1.4 0.33
47 =27 | 387 | 70(40) 100 100 100
af —2f | 572 | ~21 ~4 5.1 0.5
Af — 47 | 837 | 27(7) <0.8 0.8 0.7
45 — 27 | 1095 | 100(20) 0.8(5) 4.1 0.9
57 — 37 | 353 | 19(5) 100 100 100
57 —4F | 905 | 100(9) (M14E2) <5 4.6 3.3

B2pt | 27 — 2f | 512 | 23.3(26) | EO+(M1)+E2* | Unknown 100 100 100
25 — 0f | 667 | 8.0(10) 9.2(15) 12 6.4
25 — 03 | 356 | 2.6(7) 100 100 100
2F —4F | 436 | 3.4(3) 47(13) 25 49
2F — 2 | 701 | 1.3(3) | E0+M1+E2 | 0.7739 0.6%53 2.8 0.7
2f — 07 | 855 | 15.0(5) 7.2(19) 3.2 5.3
37 — 47 | 523 | 25(3) [M1,E2] <146 156 189
3 —2f | 787 [13.7(19) | (M1+E2) >5 100 100 100

Table 7: Comparisons of the experimental relative B(E2) values with the
IBM-CM Hamiltonian and the ECQF results [38]. ;From left to right we give:
isotope, transition, y-ray energy, intensity of the transition, multipolarity, ¢
value, experimental relative B(E2) value, IBM-CM calculation and ECQF
calculation. Data are taken from [51, 54, 55, 56, 57, 58], C. Baglin [79], com-
plemented with references [66, 71].

* Pure E2 transition assumed.
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Transition | E, L, Mult. 0 Exp. IBM-CM | ECQF
(keV)

1Py | 27 27 | 486 | 100(10) | (E0)+E2+ ML | Unknown | 100 100 100
25 07 | 649 | 50(8) 61(21) 83 87
27 27 | 195 | 2.6(8) | (E0)+MIfE2 <415 122 110
2r —0f | 352 | 12.0(18) E2] 100 100 100
oF 4% | 408 | 12.7(19) 51 (11) 55 48
of —oF | 681 |13.1(20) | EO+MI1+E2 | -1.2*9% [ [1.04.9 | 08 0.3
2F 07 | 844 | 100(15) 105 (22) | 10.3 3.6
37— 25 | 291 | 3.6(11) * Unknown 100 100 100
37 — 4f 504 | 15.7(25) <28 16 18
3t of | 777 | 100(10) | (M1)+E2 4 19(1) 10 7.9
25 — 27 524 8.5(26) | E0+MI1+E2* | Unknown 100 100 100
2F 07 | 681 | 12(3) 38(15) 0.8 59
2 — 0F 1172 22(7) 4.6 (20) 0.1 2.1
47 — 25 379 39(6) 100 100 100
45— 4f | 592 | 100(14) | (BO)-M1+E2 | <12 21(5) 35 30
1537 | 294 | 7.7(23) <62 104 30
4 =28 | 390 | 51(7) 100 100 100
4 25 | 586 | 18(6) 4.6 (17) 8.7 0.3
45 —4f | 798 | 74(12) | BO4MI+E2 | 11(3) | 22(13)| 04 0.5
4f =2 | 1071 | 100(14) 126 (25) | 2.7 0.7
35 =2 | 297 | 29(8) ; Unknown | 100 100 100
35 37 | 530 | <14 | EO+MI+E2 <0.27 0 0
35— 2f | 626 | 24(7) <2.0 0.03 1.7
35 2 | 821 | 44(13) <0.9 0.4 0.6
35 —4f | 1034 | 60(18) < 0.40 0.02 0.08
35— 2F | 1307 | 100(15) <021 0.03 | 0.04

Table 8: See caption of Table 7.
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Transition | E, L, Mult. ) Exp. IBM-CM | ECQF
(keV)

86pt | 25 — 27 | 416 | 100(4) M1+E2 1972 100 100 100
25 — 07 | 607 62(15) 9.4(23) 5 6.3
23 — 47 | 308 | 7.7(6) 69(8) 38 39
257 — 05 | 327 | 15. 1( 2) 100 100 100
25 — 0 | 799 | 100(12) 7.6(11) 3.8 2.2
37 — 25 | 349 | 12.4(3) MI1+E2 2.8(3) 100 100 100
37 —4f | 466 | 12.4(6) | (MI1+E2) | 0.42(7) | 4.0(16) 24 19
3.8(9) || 25(13) 24 19
37 —2f | 765 | 100(5) M1+E2 1615 18(4) 9.0 6.7
4; — 25 | 384 | 63(5) 100 100 100
45 —4f | 501 | 100(16) MI+E2 | -0.85(9) | 18(5) 37 39
47 —2f | 800 | 79(16) 3.2(7) 0.4 0.3
27 — 05 | 704 | 43(5) 100 100 100
25 — 27 | 985 | 100(10) M14+E2 | -0.12(6) | 0.6(6) 41 49
M1+E2 3.2(8) || 40(21) 41 49
25 — 0 | 1176 | 48(5) 8.6(13) 3.5 2.4
43 — 37 | 266 |19.1(18) <440 115 25
45 —2F | 424 45(5) 100 100 100
45 —4f | 732 | 82(5) | EO+MI1+E2 <12 2.3 0.3
45 —2f | 1031 100(5) 2.6(3) 1.4 0.6
57 — 37 | 406 | 22(7) 100 100 100
57 —4f | 872 | 100(7) <10 4.1 3.3

Table 9: See caption of Table 7.
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Transition | E, Mult. ) Exp. IBM-CM | ECQF
(keV)
88pt | 25 — 27 | 340 E2* Unknown 100 100 100
25 — 0 | 605 3.7(2) 0.5 2.2
05 — 24 193 100 100 100
03 — 27 | 533 21(5) 17 53
37 —25 | 331 F2* Unknown 100 100 100
37 —2f | 671 <5 0.84 3.3
43 — 47 | 415 M1+(E2) <92 83 69
43 — 25 | 479 100 100 100
ad —2f | 820 Q) 1.43(17) | 04 0.14
25 — 03 | 316 100 100 100
25 —4f | 444 21(3) 17 24
257 —2f | 849 E0+M1+E2 <0.5 0.3 0.07
24 — 0 | 1115 1.0(1) 0.1 0.8
25 — 27 198 * Unknown 100 100 100
27 — 37 | 376 M1+E2 1.3(3) 6(4) 39 1240
27 — 47 | 642 0.9(3) 0.01 1.3
25 — 25 | 707 E0+M1+E2 <0.8 0.3 16
25 — 2f | 1047 E0+M1+E2 <0.2 0.05 0.7
2f —0f | 1313 0.11(4) 0.0 0.0
WOpt | 2f —2f | 302 E2* Unknown 100 100 100
2f —0f | 598 1.3(1) 0 1.0
37 — 4f 180 M1+E2 3 4977, 43 36
37— 25 | 319 E2* Unknown 100 100 100
37— 27 | 621 M1+E2 1.0%39 1.0%5%8 0 1.7
03 — 25 | 323 100 100 100
03 —2f | 625 10.5(8) 10 48
47 — 47 | 391 [M1,E2] <140 100 79
437 — 23 | 531 100 100 100
27 — 05 | 282 100 100 100
27 — 37 | 286 (M1)+E2 >5 47(1) 0 21
25 — 47 | 466 5.1(5) 75 18
25 — 23 | 605 M1+(E2) <04 <0.6 12 9.3
25 —2F | 907 E0+(M1,E2) <0.6 0 0.03
25 —0f | 1203 0.019(3) 0.04 0.6
92pg | 27 — 4 | 655 0.85(11) 64 16
257 — 05 | 244 100 100 100
25 — 37 | 518 <22 0 18
257 — 25 | 827 <0.3 9 8.4
25 —2f | 1123 <1.7 0 0.02
25 — 0f | 1439 0.023(3) 0.1 0.7
APt | 37 — 4f 111 [M1,E2] <75 40 39
37 — 25 | 301 (M1)+E2 >5 100 100 100
37 —2f | 594 (M1)+E2 >10 <0.64 0.0 0.6

Table 10: See caption of Table 7.
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