74 research outputs found

    Numerical investigation of the Rayleigh hypothesis for electromagnetic scattering by a particle

    Get PDF
    The validity of the Rayleigh hypothesis has been a long-standing issue in the applicability of the T-matrix method to near-field calculations, and despite numerous theoretical works, the practical consequences for numerical simulations have remained unclear. Such calculations are increasingly important in the field of nanooptics, for which accurate and efficient modeling tools are in high demand. We here tackle this challenge by investigating numerically the convergence behavior of series expansions of the electric field around spheroidal particles, which provides us with unambiguous examples to clarify the conditions of convergence. This study is made possible by the combination of alternative methods to compute near-fields accurately, and crucially, the recent improvements in the calculation of T-matrix elements free from numerical instabilities, as such errors would otherwise obfuscate the intrinsic convergence properties of the field series. The resulting numerical confirmation for the range of validity of the Rayleigh hypothesis, complemented by a better understanding of the convergence behavior of the field expansions, is a crucial step toward future developments

    Second harmonic generation with zero phase velocity waves

    No full text
    We design a dual-band nonlinear composite right-left handed transmission line with phase-matching achieved between the fundamental frequency and second harmonic when both interacting waves have zero phase velocity. Additionally, we show that such a transmission line supports a new regime where the generation of backward second harmonic waves is achieved from a backward fundamental frequency wave

    High redshift quasars and the supermassive black hole mass budget: constraints on quasar formation models

    Full text link
    We investigate the constraints on models of supermassive black hole (SMBH) and quasar formation obtainable from two recent observational developments: the discovery of luminous quasars at z~6, and estimates of the local mass density of SMBHs. If ~90 per cent of this mass was accreted at redshifts z<3, as suggested by the observed quasar luminosity functions, these joint constraints pose a challenge for models, which must account for the observed luminous quasar population at z~6 within a very limited `mass budget'. We investigate a class of models based within the hierarchical structure formation scenario, in which major mergers lead to black hole formation and fuelling, and the resulting quasars shine at their Eddington-limited rate until their fuel is exhausted. We show that the simplest such model, in which a constant fraction of the gas within the halo is accreted in each major merger, cannot satisfy both constraints simultaneously. When this model is normalized to reproduce the number density of luminous quasars at z~6, the mass budget is grossly exceeded due to an overabundance of lower mass SMBHs. We explore a range of modifications to the simple model designed to overcome this problem. We show that both constraints can be satisfied if the gas accretion fraction scales as a function of the halo virial velocity. Similar scalings have been proposed in order to reproduce the local M-sigma relation. Successful models can also be constructed by restricting the formation of seed black holes to redshifts above z~11.5 or to haloes above a velocity threshold ~55 km/s, or assuming that only a fraction of major mergers result in formation of a seed SMBH. (abridged)Comment: 19 pages, 6 figures, 1 table. v2: Corrected references. v3: Extended Section 5.1, corrected Section 3.2, various other corrections and additions suggested by referee. Accepted by MNRAS in this for

    The SINS survey of z~2 galaxy kinematics: properties of the giant star forming clumps

    Full text link
    We have studied the properties of giant star forming clumps in five z~2 star-forming disks with deep SINFONI AO spectroscopy at the ESO VLT. The clumps reside in disk regions where the Toomre Q-parameter is below unity, consistent with their being bound and having formed from gravitational instability. Broad H{\alpha}/[NII] line wings demonstrate that the clumps are launching sites of powerful outflows. The inferred outflow rates are comparable to or exceed the star formation rates, in one case by a factor of eight. Typical clumps may lose a fraction of their original gas by feedback in a few hundred million years, allowing them to migrate into the center. The most active clumps may lose much of their mass and disrupt in the disk. The clumps leave a modest imprint on the gas kinematics. Velocity gradients across the clumps are 10-40 km/s/kpc, similar to the galactic rotation gradients. Given beam smearing and clump sizes, these gradients may be consistent with significant rotational support in typical clumps. Extreme clumps may not be rotationally supported; either they are not virialized, or they are predominantly pressure supported. The velocity dispersion is spatially rather constant and increases only weakly with star formation surface density. The large velocity dispersions may be driven by the release of gravitational energy, either at the outer disk/accreting streams interface, and/or by the clump migration within the disk. Spatial variations in the inferred gas phase oxygen abundance are broadly consistent with inside-out growing disks, and/or with inward migration of the clumps.Comment: accepted Astrophys. Journal, February 9, 201

    The Evolution of Early-type Red Galaxies with the GEMS Survey: Luminosity-size and Stellar Mass-size Relations Since z=1

    Full text link
    We combine HST/ACS imaging from the GEMS survey with redshifts and rest-frame quantities from COMBO-17 to study the evolution of morphologically early-type galaxies with red colors since z=1. We use a new large sample of 728 galaxies with centrally-concentrated radial profiles (Sersic n>2.5) and rest-frame U-V colors on the red sequence. By appropriate comparison with the local relations from SDSS, we find that the luminosity-size (L-R) and stellar mass-size (M-R) relations evolve in a manner that is consistent with the passive aging of ancient stars. By itself, this result is consistent with a completely passive evolution of the red early-type galaxy population. If instead, as demonstrated by a number of recent surveys, the early-type galaxy population builds up in mass by a factor of 2 since z=1, our results imply that new additions to the early-type galaxy population follow similar L-R and M-R correlations, compared to the older subset of early-type galaxies. Adding early-type galaxies to the red sequence through disk fading appears to be consistent with the data. Through comparison with models, the role of dissipationless merging is limited to <1 major merger on average since z=1 for the most massive galaxies. Predictions from models of gas-rich mergers are not yet mature enough to allow a detailed comparison to our observations. We find tentative evidence that the amount of luminosity evolution depends on galaxy stellar mass, such that the least massive galaxies show stronger luminosity evolution compared to more massive early types. This could reflect a different origin of low-mass early-type galaxies and/or younger stellar populations; the present data is insufficient to discriminate between these possibilities. (abridged)Comment: Submitted to ApJ, 23 pages, Latex using emulateapj5.sty and onecolfloat.sty (included), 10 figures, version with full resolution figures at http://www.astro.umass.edu/~dmac/Papers/ETevol.hires.p

    What turns galaxies off? The different morphologies of star-forming and quiescent galaxies since z~2 from CANDELS

    Get PDF
    We use HST/WFC3 imaging from the CANDELS Multicycle Treasury Survey, in conjunction with the Sloan Digital Sky Survey, to explore the evolution of galactic structure for galaxies with stellar masses >3e10M_sun from z=2.2 to the present epoch, a time span of 10Gyr. We explore the relationship between rest-frame optical color, stellar mass, star formation activity and galaxy structure. We confirm the dramatic increase from z=2.2 to the present day in the number density of non-star-forming galaxies above 3e10M_sun reported by others. We further find that the vast majority of these quiescent systems have concentrated light profiles, as parametrized by the Sersic index, and the population of concentrated galaxies grows similarly rapidly. We examine the joint distribution of star formation activity, Sersic index, stellar mass, inferred velocity dispersion, and stellar surface density. Quiescence correlates poorly with stellar mass at all z<2.2. Quiescence correlates well with Sersic index at all redshifts. Quiescence correlates well with `velocity dispersion' and stellar surface density at z>1.3, and somewhat less well at lower redshifts. Yet, there is significant scatter between quiescence and galaxy structure: while the vast majority of quiescent galaxies have prominent bulges, many of them have significant disks, and a number of bulge-dominated galaxies have significant star formation. Noting the rarity of quiescent galaxies without prominent bulges, we argue that a prominent bulge (and perhaps, by association, a supermassive black hole) is an important condition for quenching star formation on galactic scales over the last 10Gyr, in qualitative agreement with the AGN feedback paradigm.Comment: The Astrophysical Journal, in press; 20 pages with 13 figure

    Observing the First Stars and Black Holes

    Full text link
    The high sensitivity of JWST will open a new window on the end of the cosmological dark ages. Small stellar clusters, with a stellar mass of several 10^6 M_sun, and low-mass black holes (BHs), with a mass of several 10^5 M_sun should be directly detectable out to redshift z=10, and individual supernovae (SNe) and gamma ray burst (GRB) afterglows are bright enough to be visible beyond this redshift. Dense primordial gas, in the process of collapsing from large scales to form protogalaxies, may also be possible to image through diffuse recombination line emission, possibly even before stars or BHs are formed. In this article, I discuss the key physical processes that are expected to have determined the sizes of the first star-clusters and black holes, and the prospect of studying these objects by direct detections with JWST and with other instruments. The direct light emitted by the very first stellar clusters and intermediate-mass black holes at z>10 will likely fall below JWST's detection threshold. However, JWST could reveal a decline at the faint-end of the high-redshift luminosity function, and thereby shed light on radiative and other feedback effects that operate at these early epochs. JWST will also have the sensitivity to detect individual SNe from beyond z=10. In a dedicated survey lasting for several weeks, thousands of SNe could be detected at z>6, with a redshift distribution extending to the formation of the very first stars at z>15. Using these SNe as tracers may be the only method to map out the earliest stages of the cosmic star-formation history. Finally, we point out that studying the earliest objects at high redshift will also offer a new window on the primordial power spectrum, on 100 times smaller scales than probed by current large-scale structure data.Comment: Invited contribution to "Astrophysics in the Next Decade: JWST and Concurrent Facilities", Astrophysics & Space Science Library, Eds. H. Thronson, A. Tielens, M. Stiavelli, Springer: Dordrecht (2008

    Modeling the accretion history of supermassive black holes

    Full text link
    There is overwhelming evidence for the presence of supermassive black holes (SMBHs) in the centers of most nearby galaxies. The mass estimates for these remnant black holes from the stellar kinematics of local galaxies and the quasar phenomenon at high redshifts point to the presence of assembled SMBHs. The accretion history of SMBHs can be reconstructed using observations at high and low redshifts as model constraints. Observations of galaxies and quasars in the submillimeter, infrared, optical, and X-ray wavebands are used as constraints, along with data from the demography of local black holes. Theoretical modeling of the growth of black hole mass with cosmic time has been pursued thus far in two distinct directions: a phenomenological approach that utilizes observations in various wavebands, and a semi-analytic approach that starts with a theoretical framework and a set of assumptions with a view to matching observations. Both techniques have been pursued in the context of the standard paradigm for structure formation in a Cold Dark Matter dominated universe. Here, we examine the key issues and uncertainties in the theoretical understanding of the growth of SMBHs.Comment: 19 pages, 4 figures, to appear as Chapter 4 in "Supermassive Black Holes in the Distant Universe" (2004), ed. A. J. Barger, Kluwer Academic Publishers, in pres
    • 

    corecore