79 research outputs found
ALTERATIONS OF LOCAL BLOOD FLOW IN THE PENUMBRA ZONE OF LOCAL CEREBRAL INFARCTION
The main objective of this study was to reveal the circulatory changes in the Penumbra zone of stroke, which was induced by the photochemical method in the cerebral cortex of the rats. It has been revealed that the maximum reduction in blood supply in the penumbra zone during permanent ischemia is achieved 24 hours after the completion of the process of inducing thrombosis of vessels. Therapeutic intervention to save the cells of the Penumbra zone, which are in the initial stages of apoptosis, it is advisable to carry out in the first 12 hours after the onset of stroke.The main objective of this study was to reveal the circulatory changes in the Penumbra zone of stroke, which was induced by the photochemical method in the cerebral cortex of the rats. It has been revealed that the maximum reduction in blood supply in the penumbra zone during permanent ischemia is achieved 24 hours after the completion of the process of inducing thrombosis of vessels. Therapeutic intervention to save the cells of the Penumbra zone, which are in the initial stages of apoptosis, it is advisable to carry out in the first 12 hours after the onset of stroke
A Proteomic Study of Memory After Imprinting in the Domestic Chick.
The intermediate and medial mesopallium (IMM) of the domestic chick forebrain has previously been shown to be a memory system for visual imprinting. Learning-related changes occur in certain plasma membrane and mitochondrial proteins in the IMM. Two-dimensional gel electrophoresis/mass spectrometry has been employed to identify more comprehensively learning-related expression of proteins in the membrane-mitochondrial fraction of the IMM 24 h after training. We inquired whether amounts of these proteins in the IMM and a control region (posterior pole of the nidopallium, PPN) are correlated with a behavioral estimate of memory for the imprinting stimulus. Learning-related increases in amounts of the following proteins were found in the left IMM, but not the right IMM or the left or right PPN: (i) membrane cognin; (ii) a protein resembling the P32 subunit of splicing factor SF2; (iii) voltage-dependent anionic channel-1; (iv) dynamin-1; (v) heterogeneous nuclear ribonucleoprotein A2/B1. Learning-related increases in some transcription factors involved in mitochondrial biogenesis were also found, without significant change in mitochondrial DNA copy number. The results indicate that the molecular processes involved in learning and memory underlying imprinting include protein stabilization, increased mRNA trafficking, synaptic vesicle recycling, and specific changes in the mitochondrial proteome.BBSRC grants 8/S18043, BB/H018948/1, Isaac Newton Trust (McCabe). S. Rustaveli National Science Foundation grant 31/01; Ilia State University (Solomonia).This is the final version of the article. It first appeared from Frontiers via http://dx.doi.org/10.3389/fnbeh.2015.0031
Micro-RNAs, their target proteins, predispositions and the memory of filial imprinting.
Visual imprinting is a learning process whereby young animals come to prefer a visual stimulus after exposure to it (training). The intermediate medial mesopallium (IMM) in the domestic chick forebrain is critical for visual imprinting and contributes to molecular regulation of memory formation. We investigated the role of micro-RNAs (miRNAs) in such regulation. Twenty-four hours after training, miRNA spectra in the left IMM were compared between chicks with high preference scores (strong memory for imprinting stimulus), and chicks with low preference scores (weak memory for imprinting stimulus). Using criteria of significance and expression level, we chose gga-miR-130b-3p for further study and found that down-regulation correlated with learning strength. No effect was detected in posterior nidopallium, a region not involved in imprinting. We studied two targets of gga-miR-130b-3p, cytoplasmic polyadenylation element binding proteins 1 (CPEB-1) and 3 (CPEB-3), in two subcellular fractions (P2 membrane-mitochondrial and cytoplasmic) of IMM and posterior nidopallium. Only in the left IMM was a learning-related effect observed, in membrane CPEB-3. Variances from the regression with preference score and untrained chicks suggest that, in the IMM, gga-miR-130b-3p level reflects a predisposition, i.e. capacity to learn, whereas P2 membrane-mitochondrial CPEB-3 is up-regulated in a learning-specific way.Sh. Rustaveli National Science Foundation, Georgia (Grant 217592
Imprinting.
Imprinting is a type of learning by which an animal restricts its social preferences to an object after exposure to that object. Filial imprinting occurs shortly after birth or hatching and sexual imprinting, around the onset of sexual maturity; both have sensitive periods. This review is concerned mainly with filial imprinting. Filial imprinting in the domestic chick is an effective experimental system for investigating mechanisms underlying learning and memory. Extensive evidence implicates a restricted part of the chick forebrain, the intermediate and medial mesopallium (IMM), as a memory store for visual imprinting. After imprinting to a visual stimulus, neuronal responsiveness in IMM is specifically biased toward the imprinting stimulus. Both this bias and the strength of imprinting measured behaviorally depend on uninterrupted sleep shortly after training. When learning-related changes in IMM are lateralized they occur predominantly or completely on the left side. Ablation experiments indicate that the left IMM is responsible for long-term storage of information about the imprinting stimulus; the right side is also a store but additionally is necessary for extra storage outside IMM, in a region necessary for flexible use of information acquired through imprinting. Auditory imprinting gives rise to biochemical, neuroanatomical, and electrophysiological changes in the medio-rostral nidopallium/mesopallium, anterior to IMM. Auditory imprinting has not been shown to produce learning-related changes in IMM. Imprinting may be facilitated by predispositions. Similar predispositions for faces and biological motion occur in domestic chicks and human infants. WIREs Cogn Sci 2013, 4:375-390. doi: 10.1002/wcs.1231 For further resources related to this article, please visit the WIREs website.This review is written in memory of the late Sir Gabriel Horn, in recognition of his pioneering work on the neurobiology of imprinting. I am indebted to Robert Levin, Alister Nicol, Revaz Solomonia, Rie Suge, and two anonymous referees for valuable comments on a draft manuscript. The review was written while in receipt of a project grant from the Biotechnology and Biological Sciences Research Council.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/wcs.123
Recommended from our members
Mitochondrial fusion and fission proteins and the recognition memory of imprinting in domestic chicks
Visual imprinting is a learning process through which young, visually naĂŻve animals come to recognize a visual stimulus by being exposed to it (training) and subsequently approach the stimulus in preference to others. A large body of evidence indicates that a restricted part of the forebrain, the intermediate medial mesopallium (IMM), is a memory region for visual imprinting in the domestic chick. Previous studies have shown learning-related up-regulation of several mitochondrial proteins in the IMM 24 h after training. Learning-related increases in transcription factors involved in mitochondrial biogenesis were found without significant change in mitochondrial DNA copy number, but the issue of whether mitochondrial fusion or fission processes change with learning was unresolved. The present study enquired whether proteins involved in mitochondrial fusion and fission contribute to memory following imprinting. Tissue was sampled from the left and right IMM, and the left and right posterior pole of the nidopallium (a control brain region not involved in imprinting). The amounts of the following proteins were measured by Western immunoblotting 24 h after training: mitochondrial mitofusin-1 (MTF-1, as indicator of mitochondrial fusion), membrane dynamin-related protein-1 (DRP-1, as indicator of mitochondrial fission) and cytoplasmic DRP-1. Learning-related increases in MTF-1 and DRP-1 were observed bilaterally in the IMM, but not in either side of the posterior pole of the nidopallium. Cytoplasmic DRP-1 was not changed significantly in any region studied. The results implicate increased, balanced levels of mitochondrial fusion and fission in memory formation up to 24 h after training.Supported by the Sh. Rustaveli National Science Foundation, Georgia (Grant 217592)
The Effect of Severe Intraventricular Hemorrhage on the Biorhythms of Feeding in Premature Infants
Background: Suck-swallow rhythmicity and the integration of breathing into infant feeding are developmentally regulated. Neurological injury and breathing abnormalities can both impact feeding in preterm infants.
Objective: To determine the effects of neurologic injury independent of effects of disordered breathing on feeding biorhythms in premature infants.
Methods: Low-risk preterm infants (LRP), infants with Grade 3–4 Intraventricular Hemorrhage (IVH), those with bronchopulmonary dysplasia (BPD), and those with both BPD and IVH (BPD+IVH) were identified. Forty-seven infants, 32–42 weeks Postmenstrual Age (PMA) were evaluated on one or more occasions (131 studies). Of these, 39 infants (81 studies) were performed at \u3e35 weeks PMA. Coefficient of variation (COV) (=standard deviation of the inter-event (e.g., suck-suck, swallow-breath, etc.) interval divided by the mean of the interval) was used to quantify rhythmic stability.
Results: To adjust for PMA, only those infants \u3e35–42 weeks were compared. Suck-suck COV was significantly lower (more rhythmically stable) in the LRP group [COV = 0.274 ± 0.051 (S.D.)] compared to all other groups (BPD = 0.325 ± 0.066; IVH = 0.342 ± 0.072; BPD + IVH = 0.314 ± 0.069; all p \u3c 0.05). Similarly, suck-swallow COV was significantly lower in LRP babies (0.360 ± 0.066) compared to the BPD group (0.475 ± 0.113) and the IVH cohort (0.428 ± 0.075) (p \u3c 0.05). The BPD+IVH group (0.424 ± 0.109), while higher, was not quite statistically significant.
Conclusions: Severe IVH negatively impacts suck-suck and suck-swallow rhythms. The independent effect of neurological injury in the form of IVH on feeding rhythms suggests that quantitative analysis of feeding may reflect and predict neurological sequelae
Src and Memory: A Study of Filial Imprinting and Predispositions in the Domestic Chick.
Visual imprinting is a learning process whereby young animals come to prefer a visual stimulus after exposure to it (training). The available evidence indicates that the intermediate medial mesopallium (IMM) in the domestic chick forebrain is a site of memory formation during visual imprinting. We have studied the role of Src, an important non-receptor tyrosine kinase, in memory formation. Amounts of total Src (Total-Src) and its two phosphorylated forms, tyrosine-416 (activated, 416P-Src) and tyrosine-527 (inhibited, 527P-Src), were measured 1 and 24 h after training in the IMM and in a control brain region, the posterior pole of nidopallium (PPN). One hour after training, in the left IMM, we observed a positive correlation between the amount of 527P-Src and learning strength that was attributable to learning, and there was also a positive correlation between 416P-Src and learning strength that was attributable to a predisposition to learn readily. Twenty-four hours after training, the amount of Total-Src increased with learning strength in both the left and right IMM, and amount of 527P-Src increased with learning strength only in the left IMM; both correlations were attributable to learning. A further, negative, correlation between learning strength and 416P-Src/Total-Src in the left IMM reflected a predisposition to learn. No learning-related changes were found in the PPN control region. We suggest that there are two pools of Src; one of them in an active state and reflecting a predisposition to learn, and the second one in an inhibited condition, which increases as a result of learning. These two pools may represent two or more signaling pathways, namely, one pathway downstream of Src activated by tyrosine-416 phosphorylation and another upstream of Src, keeping the enzyme in an inactivated state via phosphorylation of tyrosine-527
Tipping the scales:Lessons from simple model systems on inositol imbalance in neurological disorders
Fetal-Maternal Hemorrhage: A Case and Literature Review
Nearly all pregnancies include an insignificant hemorrhage of fetal blood into the maternal circulation. In some cases, the hemorrhage is large enough to compromise the fetus, resulting in fetal demise, stillbirth, or delivery of a severely anemic infant. Unfortunately, the symptoms of a significant fetal-maternal hemorrhage can be subtle, nonspecific, and difficult to identify at the time of the event. We present the case of a severely anemic newborn who was delivered in our facility with an extensive literature review
A proteomic study of memory after imprinting in the domestic chick
The intermediate and medial mesopallium (IMM) of the domestic chick forebrain has previously been shown to be a memory system for visual imprinting. Learning-related changes occur in certain plasma membrane and mitochondrial proteins in the IMM. Two-dimensional gel electrophoresis/mass spectrometry has been employed to identify more comprehensively learning-related expression of proteins in the membrane-mitochondrial fraction of the IMM 24 h after training. We inquired whether amounts of these proteins in the IMM and a control region (posterior pole of the nidopallium, PPN) are correlated with a behavioural estimate of memory for the imprinting stimulus. Learning-related increases in amounts of the following proteins were found in the left IMM, but not the right IMM or the left or right PPN: (i) membrane cognin; (ii) a protein resembling the P32 subunit of splicing factor SF2; (iii) voltage-dependent anionic channel-1; (iv) dynamin-1; (v) heterogeneous nuclear ribonucleoprotein A2/B1. Learning-related increases in some transcription factors involved in mitochondrial biogenesis were also found, without significant change in mitochondrial DNA copy number. The results indicate that the molecular processes involved in learning and memory underlying imprinting include protein stabilization, increased mRNA trafficking, synaptic vesicle recycling and specific changes in the mitochondrial proteome
- …