1,254 research outputs found
Simulations of CMOS pixel sensors with a small collection electrode, improved for a faster charge collection and increased radiation tolerance
CMOS pixel sensors with a small collection electrode combine the advantages
of a small sensor capacitance with the advantages of a fully monolithic design.
The small sensor capacitance results in a large ratio of signal-to-noise and a
low analogue power consumption, while the monolithic design reduces the
material budget, cost and production effort. However, the low electric field in
the pixel corners of such sensors results in an increased charge collection
time, that makes a fully efficient operation after irradiation and a timing
resolution in the order of nanoseconds challenging for pixel sizes larger than
approximately forty micrometers. This paper presents the development of
concepts of CMOS sensors with a small collection electrode to overcome these
limitations, using three-dimensional Technology Computer Aided Design
simulations. The studied design uses a 0.18 micrometer process implemented on a
high-resistivity epitaxial layer.Comment: Proceedings of the PIXEL 2018 Worksho
Combining TCAD and Monte Carlo Methods to Simulate CMOS Pixel Sensors with a Small Collection Electrode using the Allpix Squared Framework
Combining electrostatic field simulations with Monte Carlo methods enables
realistic modeling of the detector response for novel monolithic silicon
detectors with strongly non-linear electric fields. Both the precise field
description and the inclusion of Landau fluctuations and production of
secondary particles in the sensor are crucial ingredients for the understanding
and reproduction of detector characteristics.
In this paper, a CMOS pixel sensor with small collection electrode design,
implemented in a high-resistivity epitaxial layer, is simulated by integrating
a detailed electric field model from finite element TCAD into a Monte Carlo
based simulation with the Allpix framework. The simulation results are
compared to data recorded in test-beam measurements and very good agreement is
found for various quantities such as cluster size, spatial resolution and
efficiency. Furthermore, the observables are studied as a function of the
intra-pixel incidence position to enable a detailed comparison with the
detector behavior observed in data.
The validation of such simulations is fundamental for modeling the detector
response and for predicting the performance of future prototype designs.
Moreover, visualization plots extracted from the charge carrier drift model of
the framework can aid in understanding the charge propagation behavior in
different regions of the sensor.Comment: 15 pages, 18 figure
Test-beam Performance Results of the FASTPIX Sub-Nanosecond CMOS Pixel Sensor Demonstrator
Within the ATTRACT FASTPIX project, a monolithic pixel sensor demonstrator
chip has been developed in a modified 180 nm CMOS imaging process technology,
targeting sub-nanosecond timing precision for single ionising particles. It
features a small collection electrode design on a 25 micrometers-thick
epitaxial layer and contains 32 mini matrices of 68 hexagonal pixels each, with
pixel pitches ranging from 8.66 to 20 micrometers. Four pixels are transmitting
an analog output signal and 64 are transmitting binary hit information. Various
design variations are explored, aiming at accelerating the charge collection
and making the timing of the charge collection more uniform over the pixel
area. Signal treatment of the analog waveforms, as well as reconstruction of
digital position, time and charge information, is carried out off-chip. This
contribution introduces the design of the sensor and readout system and
presents performance results for various pixel designs achieved in recent test
beam measurements with external tracking and timing reference detectors. A time
resolution below 150 ps is obtained at full efficiency for all pixel pitches.Comment: 14 pages, 15 figures, submitted to NIMA (special issue for ULITIMA
2023 conference
Comparison of small collection electrode CMOS pixel sensors with partial and full lateral depletion of the high-resistivity epitaxial layer
Large area silicon pixel trackers are currently under development for the High Luminosity upgrade of the LHC detectors. They are also foreseen for the detectors proposed for the future high energy Compact Linear Collider CLIC. For the CLIC tracker a single hit resolution of 7 μm, a timing resolution of a few nanoseconds and a material budget of 1–2 % of radiation length per detection layer are required. Integrated CMOS technologies are promising candidates to reduce the cost, facilitate the production and to achieve a low material budget. CMOS sensors with a small size of the collection electrode benefit from a small sensor capacitance, resulting in a large signal to noise ratio and a low power consumption.
The Investigator is a test-chip developed for the ALICE Inner Tracking System upgrade, implemented in a 180 nm CMOS process with a small collection electrode on a high resistivity epitaxial layer. The Investigator has been produced in different process variants: the standard process and a modified process, where an additional N-layer has been inserted to obtain full lateral depletion. This paper presents a comparison of test-beam results for both process variants, focuses on spatial and timing resolution as well as efficiency measurements
Charge collection and efficiency measurements of the TJ-Monopix2 DMAPS in 180nm CMOS technology
Monolithic CMOS pixel detectors have emerged as competitive contenders in the
field of high-energy particle physics detectors. By utilizing commercial
processes they offer high-volume production of such detectors. A series of
prototypes has been designed in a 180nm Tower process with depletion of the
sensor material and a column-drain readout architecture. The latest iteration,
TJ-Monopix2, features a large 2cm x 2cm matrix consisting of 512 x 512
pixels with 33.04um pitch. A small collection electrode design aims at low
power consumption and low noise while the radiation tolerance for high-energy
particle detector applications needs extra attention. With a goal to reach
radiation tolerance to levels of MeV ncm of
NIEL damage a modification of the standard process has been implemented by
adding a low-dosed n-type silicon implant across the pixel in order to allow
for homogeneous depletion of the sensor volume. Recent lab measurements and
beam tests were conducted for unirradiated modules to study electrical
characteristics and hit detection efficiency.Comment: Conference proceedings for PIXEL2022 conference, submitted to Po
Transient Monte Carlo Simulations for the Optimisation and Characterisation of Monolithic Silicon Sensors
An ever-increasing demand for high-performance silicon sensors requires
complex sensor designs that are challenging to simulate and model. The
combination of electrostatic finite element simulations with a transient Monte
Carlo approach provides simultaneous access to precise sensor modelling and
high statistics. The high simulation statistics enable the inclusion of Landau
fluctuations and production of secondary particles, which offers a realistic
simulation scenario. The transient simulation approach is an important tool to
achieve an accurate time-resolved description of the sensor, which is crucial
in the face of novel detector prototypes with increasingly precise timing
capabilities. The simulated time resolution as a function of operating
parameters as well as the full transient pulse can be monitored and assessed,
which offers a new perspective on the optimisation and characterisation of
silicon sensors.
In this paper, a combination of electrostatic finite-element simulations
using 3D TCAD and transient Monte Carlo simulations with the Allpix Squared
framework are presented for a monolithic CMOS pixel sensor with a small
collection diode, that is characterised by a highly inhomogeneous, complex
electric field. The results are compared to transient 3D TCAD simulations that
offer a precise simulation of the transient behaviour but long computation
times. Additionally, the simulations are benchmarked against test-beam data and
good agreement is found for the performance parameters over a wide range of
different operation conditions
Developing a Monolithic Silicon Sensor in a 65 nm CMOS Imaging Technology for Future Lepton Collider Vertex Detectors
Monolithic CMOS sensors in a 65 nm imaging technology are being investigated
by the CERN EP Strategic R&D Programme on Technologies for Future Experiments
for an application in particle physics. The appeal of monolithic detectors lies
in the fact that both sensor volume and readout electronics are integrated in
the same silicon wafer, providing a reduction in production effort, costs and
scattering material. The Tangerine Project WP1 at DESY participates in the
Strategic R&D Programme and is focused on the development of a monolithic
active pixel sensor with a time and spatial resolution compatible with the
requirements for a future lepton collider vertex detector. By fulfilling these
requirements, the Tangerine detector is suitable as well to be used as
telescope planes for the DESY-II Test Beam facility. The project comprises all
aspects of sensor development, from the electronics engineering and the sensor
design using simulations, to laboratory and test beam investigations of
prototypes. Generic TCAD Device and Monte-Carlo simulations are used to
establish an understanding of the technology and provide important insight into
performance parameters of the sensor. Testing prototypes in laboratory and test
beam facilities allows for the characterization of their response to different
conditions. By combining results from all these studies it is possible to
optimize the sensor layout. This contribution presents results from generic
TCAD and Monte-Carlo simulations, and measurements performed with test chips of
the first sensor submission.Comment: 7 pages, 8 figures, submitted to IEEE Xplore as conference record for
2022 IEEE NSS/MIC/RTS
R&D Paths of Pixel Detectors for Vertex Tracking and Radiation Imaging
This report reviews current trends in the R&D of semiconductor pixellated
sensors for vertex tracking and radiation imaging. It identifies requirements
of future HEP experiments at colliders, needed technological breakthroughs and
highlights the relation to radiation detection and imaging applications in
other fields of science.Comment: 17 pages, 2 figures, submitted to the European Strategy Preparatory
Grou
Performance of the MALTA Telescope
MALTA is part of the Depleted Monolithic Active Pixel sensors designed in
Tower 180nm CMOS imaging technology. A custom telescope with six MALTA planes
has been developed for test beam campaigns at SPS, CERN, with the ability to
host several devices under test. The telescope system has a dedicated custom
readout, online monitoring integrated into DAQ with realtime hit map, time
distribution and event hit multiplicity. It hosts a dedicated fully
configurable trigger system enabling to trigger on coincidence between
telescope planes and timing reference from a scintillator. The excellent time
resolution performance allows for fast track reconstruction, due to the
possibility to retain a low hit multiplicity per event which reduces the
combinatorics. This paper reviews the architecture of the system and its
performance during the 2021 and 2022 test beam campaign at the SPS North Area
- …