10 research outputs found

    Optimisation, evaluation and application of cerebrovascular reactivity measurement using magnetic resonance imaging in patients with cerebral small vessel disease

    Get PDF
    Small vessel disease (SVD) is a common cause of strokes and dementia. Currently, there are no treatments; therefore, developing and validating early biomarkers of disease progression and treatment response is important for future drug trials. Though SVD pathogenesis is not well understood, findings from previous studies suggest that blood-brain barrier dysfunction and impaired cerebrovascular reactivity (CVR) contribute to the disease. The latter can be measured in vivo using a vasoactive stimulus in parallel with magnetic resonance imaging (MRI) techniques sensitive to blood flow, such as blood oxygen level dependent (BOLD) contrast, and has frequently been assessed in patients with steno-occlusive diseases. However, it is unclear if the technique is reliable when investigating cerebrovascular health in deep structures of the brain where SVD is prevalent. Therefore, this thesis aimed to assess and optimise the reliability of CVR measurements and deepen our understanding of its role in SVD pathogenesis. A systematic review was performed to provide a detailed overview of CVR MRI methodologies and clinical applications, including SVD, present in the literature, which identified several acquisition and analysis methods, a need for greater standardisation and lack of data on reliability. Specifically in SVD research, there was limited application of CVR MRI in SVD populations, little optimisation and reliability assessment of CVR in deep brain structures relevant to SVD, such as in white and subcortical grey matter. Following those findings, the effects of voxel- and region-based analysis approaches on reliability of CVR estimates were investigated using simulations and test-retest data from healthy volunteers. Voxel-based CVR magnitude estimates in tissues with high noise levels were prone to bias, whereas biases in region-based estimates were independent of noise level, but consistently underestimated CVR magnitude relative to the ground-truth mean. Furthermore, the test-retest study confirmed the repeatability of CVR estimates from a BOLD-CVR experiment with fixed inhaled stimulus, although a systematic, but small, bias was detected due to habituation to the gas challenge. The data from healthy volunteers were further used to conduct a proof-of-concept and investigate the feasibility of extracting cerebral pulsatility from BOLD-CVR data. Small-to-moderate correlations with pulsatility from phase-contrast MRI were found depending on the regions considered. CVR pulsatility was also computed in a small cohort of SVD patients: it was higher than in healthy volunteers, but no associations were found with SVD burden. It was concluded that further optimisation and validation of the technique is needed before being suitable for clinical research. Following the optimisation of the CVR MRI technique, relationships between CVR and SVD neuroimaging features, cognition, stroke severity and outcome were investigated cross-sectionally and longitudinally in a cohort of patients with mild stroke. In the cross-sectional analysis, CVR impairment in normal-appearing and damaged tissues was associated with worse SVD burden and cognition deficit. Furthermore, the longitudinal analysis showed that baseline CVR impairment predicted worsening of white matter hyperintensity and perivascular space volumes after one year. In conclusion, assessment of CVR in the brain and its deeper structures was successfully conducted in healthy volunteers and patients with SVD using MRI. However, this required appropriate optimisation of processing strategy as the latter can affect accuracy of CVR parameters and inter-study comparability. Importantly, applying the technique in a cohort of SVD patients led to the findings that CVR impairment was related to worse SVD burden and is a potential marker of SVD severity and progression

    Cerebrovascular reactivity measurements using 3T BOLD MRI and a fixed inhaled CO2 gas challenge: Repeatability and impact of processing strategy

    Get PDF
    Introduction: Cerebrovascular reactivity (CVR) measurements using blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) are commonly used to assess the health of cerebral blood vessels, including in patients with cerebrovascular diseases; however, evidence and consensus regarding reliability and optimal processing are lacking. We aimed to assess the repeatability, accuracy and precision of voxel- and region-based CVR measurements at 3 T using a fixed inhaled (FI) CO2 stimulus in a healthy cohort.Methods: We simulated the effect of noise, delay constraints and voxel- versus region-based analysis on CVR parameters. Results were verified in 15 healthy volunteers (28.1±5.5 years, female: 53%) with a test-retest MRI experiment consisting of two CVR scans. CVR magnitude and delay in grey matter (GM) and white matter were computed for both analyses assuming a linear relationship between the BOLD signal and time-shifted end-tidal CO2 (EtCO2) profile.Results: Test-retest repeatability was high [mean (95% CI) inter-scan difference: −0.01 (−0.03, −0.00) %/mmHg for GM CVR magnitude; −0.3 (−1.2,0.6) s for GM CVR delay], but we detected a small systematic reduction in CVR magnitude at scan 2 versus scan 1, accompanied by a greater EtCO2 change [±1.0 (0.4,1.5) mmHg] and lower heart rate [−5.5 (−8.6,−2.4] bpm]. CVR magnitude estimates were higher for voxel- versus region-based analysis [difference in GM: ±0.02 (0.01,0.03) %/mmHg]. Findings were supported by simulation results, predicting a positive bias for voxel-based CVR estimates dependent on temporal contrast-to-noise ratio and delay fitting constraints and an underestimation for region-based CVR estimates.Discussion: BOLD CVR measurements using FI stimulus have good within-day repeatability in healthy volunteers. However, measurements may be influenced by physiological effects and the analysis protocol. Voxel-based analyses should be undertaken with care due to potential for systematic bias; region-based analyses are more reliable in such cases

    Rationale and design of a longitudinal study of cerebral small vessel diseases, clinical and imaging outcomes in patients presenting with mild ischaemic stroke: Mild Stroke Study 3

    Get PDF
    Background: Cerebral small vessel disease is a major cause of dementia and stroke, visible on brain magnetic resonance imaging. Recent data suggest that small vessel disease lesions may be dynamic, damage extends into normal-appearing brain and microvascular dysfunctions include abnormal blood–brain barrier leakage, vasoreactivity and pulsatility, but much remains unknown regarding underlying pathophysiology, symptoms, clinical features and risk factors of small vessel disease. Patients and Methods: The Mild Stroke Study 3 is a prospective observational cohort study to identify risk factors for and clinical implications of small vessel disease progression and regression among up to 300 adults with non-disabling stroke. We perform detailed serial clinical, cognitive, lifestyle, physiological, retinal and brain magnetic resonance imaging assessments over one year; we assess cerebrovascular reactivity, blood flow, pulsatility and blood–brain barrier leakage on magnetic resonance imaging at baseline; we follow up to four years by post and phone. The study is registered ISRCTN 12113543. Summary: Factors which influence direction and rate of change of small vessel disease lesions are poorly understood. We investigate the role of small vessel dysfunction using advanced serial neuroimaging in a deeply phenotyped cohort to increase understanding of the natural history of small vessel disease, identify those at highest risk of early disease progression or regression and uncover novel targets for small vessel disease prevention and therapy

    Cerebrovascular Reactivity Measurement Using Magnetic Resonance Imaging: A Systematic Review

    Get PDF
    Cerebrovascular reactivity (CVR) magnetic resonance imaging (MRI) probes cerebral haemodynamic changes in response to a vasodilatory stimulus. CVR closely relates to the health of the vasculature and is therefore a key parameter for studying cerebrovascular diseases such as stroke, small vessel disease and dementias. MRI allows in vivo measurement of CVR but several different methods have been presented in the literature, differing in pulse sequence, hardware requirements, stimulus and image processing technique. We systematically reviewed publications measuring CVR using MRI up to June 2020, identifying 235 relevant papers. We summarised the acquisition methods, experimental parameters, hardware and CVR quantification approaches used, clinical populations investigated, and corresponding summary CVR measures. CVR was investigated in many pathologies such as steno-occlusive diseases, dementia and small vessel disease and is generally lower in patients than in healthy controls. Blood oxygen level dependent (BOLD) acquisitions with fixed inspired CO2 gas or end-tidal CO2 forcing stimulus are the most commonly used methods. General linear modelling of the MRI signal with end-tidal CO2 as the regressor is the most frequently used method to compute CVR. Our survey of CVR measurement approaches and applications will help researchers to identify good practice and provide objective information to inform the development of future consensus recommendations.</p

    Table_1_Cerebrovascular Reactivity Measurement Using Magnetic Resonance Imaging: A Systematic Review.DOCX

    No full text
    Cerebrovascular reactivity (CVR) magnetic resonance imaging (MRI) probes cerebral haemodynamic changes in response to a vasodilatory stimulus. CVR closely relates to the health of the vasculature and is therefore a key parameter for studying cerebrovascular diseases such as stroke, small vessel disease and dementias. MRI allows in vivo measurement of CVR but several different methods have been presented in the literature, differing in pulse sequence, hardware requirements, stimulus and image processing technique. We systematically reviewed publications measuring CVR using MRI up to June 2020, identifying 235 relevant papers. We summarised the acquisition methods, experimental parameters, hardware and CVR quantification approaches used, clinical populations investigated, and corresponding summary CVR measures. CVR was investigated in many pathologies such as steno-occlusive diseases, dementia and small vessel disease and is generally lower in patients than in healthy controls. Blood oxygen level dependent (BOLD) acquisitions with fixed inspired CO2 gas or end-tidal CO2 forcing stimulus are the most commonly used methods. General linear modelling of the MRI signal with end-tidal CO2 as the regressor is the most frequently used method to compute CVR. Our survey of CVR measurement approaches and applications will help researchers to identify good practice and provide objective information to inform the development of future consensus recommendations.</p

    The role of transsignalling via the agonistic soluble IL-6 receptor in human diseases

    No full text
    corecore