442 research outputs found

    Prosthetic Avian Vocal Organ Controlled by a Freely Behaving Bird Based on a Low Dimensional Model of the Biomechanical Periphery

    Get PDF
    Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform

    Genetic and antigenic variation of the bovine tick-borne pathogen Theileria parva in the Great Lakes region of Central Africa

    Get PDF
    BACKGROUND : Theileria parva causes East Coast fever (ECF), one of the most economically important tick-borne diseases of cattle in sub-Saharan Africa. A live immunisation approach using the infection and treatment method (ITM) provides a strong long-term strain-restricted immunity. However, it typically induces a tick-transmissible carrier state in cattle and may lead to spread of antigenically distinct parasites. Thus, understanding the genetic composition of T. parva is needed prior to the use of the ITM vaccine in new areas. This study examined the sequence diversity and the evolutionary and biogeographical dynamics of T. parva within the African Great Lakes region to better understand the epidemiology of ECF and to assure vaccine safety. Genetic analyses were performed using sequences of two antigencoding genes, Tp1 and Tp2, generated among 119 T. parva samples collected from cattle in four agro-ecological zones of DRC and Burundi. RESULTS : The results provided evidence of nucleotide and amino acid polymorphisms in both antigens, resulting in 11 and 10 distinct nucleotide alleles, that predicted 6 and 9 protein variants in Tp1 and Tp2, respectively. Theileria parva samples showed high variation within populations and a moderate biogeographical sub-structuring due to the widespread major genotypes. The diversity was greater in samples from lowlands and midlands areas compared to those from highlands and other African countries. The evolutionary dynamics modelling revealed a signal of selective evolution which was not preferentially detected within the epitope-coding regions, suggesting that the observed polymorphism could be more related to gene flow rather than recent host immune-based selection. Most alleles isolated in the Great Lakes region were closely related to the components of the trivalent Muguga vaccine. CONCLUSIONS : Our findings suggest that the extensive sequence diversity of T. parva and its biogeographical distribution mainly depend on host migration and agro-ecological conditions driving tick population dynamics. Such patterns are likely to contribute to the epidemic and unstable endemic situations of ECF in the region. However, the fact that ubiquitous alleles are genetically similar to the components of the Muguga vaccine together with the limited geographical clustering may justify testing the existing trivalent vaccine for cross-immunity in the region.Additional file 1: Table S1. Cattle blood sample distribution across agroecological zones.Additional file 2: Table S2. Nucleotide and amino acid sequences of Tp1 and Tp2 antigen epitopes from T. parva Muguga reference sequence.Additional file 3: Table S3. Characteristics of 119 T. parva samples obtained from cattle in different agro-ecological zones (AEZs) of The Democratic Republic of Congo and Burundi.Additional file 4: Figure S1. Multiple sequence alignment of the 11 Tp1 gene alleles obtained in this study.Additional file 5: Table S4. Estimates of evolutionary divergence between gene alleles for Tp1 and Tp2, using proportion nucleotide distance.Additional file 6: Table S5. Tp1 and Tp2 genes alleles with their corresponding antigen variants.Additional file 7: Table S6. Amino acid variants of Tp1 and Tp2 CD8+ T cell target epitopes of T. parva from DRC and Burundi.Additional file 8: Figure S2. Multiple sequence alignment of the 10 Tp2 gene alleles obtained in this study.Additional file 9: Table S7. Distribution of Tp1 gene alleles of T. parva from cattle and buffalo in the sub-Saharan region of Africa.Additional file 10: Table S8. Distribution of Tp2 gene alleles of T. parva from cattle and buffalo in the sub-Saharan region of Africa.Additional file 11: Figure S3. Neighbor-joining tree showing phylogenetic relationships among 48 Tp1 gene alleles described in Africa.Additional file 12: Figure S4. Phylogenetic tree showing the relationships among concatenated Tp1 and Tp2 nucleotide sequences of 93 T. parva samples from cattle in DRC and Burundi.This study is part of the PhD work supported by the University of Namur (UNamur, Belgium) through the UNamur-CERUNA institutional PhD grant awarded to GSA for bioinformatic analyses, interpretation of data and manuscript write up in Belgium. The laboratory aspects (molecular biology analysis) of the project were supported by the BecA-ILRI Hub through the Africa Biosciences Challenge Fund (ABCF) programme. The ABCF Programme is funded by the Australian Department for Foreign Affairs and Trade (DFAT) through the BecA-CSIRO partnership; the Syngenta Foundation for Sustainable Agriculture (SFSA); the Bill & Melinda Gates Foundation (BMGF); the UK Department for International Development (DFID); and the Swedish International Development Cooperation Agency (Sida). The ABCF Fellowship awarded to GAS was funded by BMGF grant (OPP1075938). Sample collection, field equipment and preliminary sample processing were supported through the “Theileria” project co-funded to the UniversitĂ© EvangĂ©lique en Afrique (UEA) by the Agence Universitaire de la Francophonie (AUF) and the CommunautĂ© Economique des Pays des Grands Lacs (CEPGL). The International Foundation for Science (IFS, Stockholm, Sweden) supported the individual scholarship awarded to GSA (grant no. IFS-92890CA3) for field work and part of field equipment to the “Theileria” project.http://www.parasitesandvectors.comam2020Veterinary Tropical Disease

    Measurement of Branching Fractions and Rate Asymmetries in the Rare Decays B -> K(*) l+ l-

    Get PDF
    In a sample of 471 million BB events collected with the BABAR detector at the PEP-II e+e- collider we study the rare decays B -> K(*) l+ l-, where l+ l- is either e+e- or mu+mu-. We report results on partial branching fractions and isospin asymmetries in seven bins of di-lepton mass-squared. We further present CP and lepton-flavor asymmetries for di-lepton masses below and above the J/psi resonance. We find no evidence for CP or lepton-flavor violation. The partial branching fractions and isospin asymmetries are consistent with the Standard Model predictions and with results from other experiments.Comment: 16 pages, 14 figures, accepted by Phys. Rev.

    Study of CP violation in Dalitz-plot analyses of B0 --> K+K-KS, B+ --> K+K-K+, and B+ --> KSKSK+

    Get PDF
    We perform amplitude analyses of the decays B0→K+K−KS0B^0 \to K^+K^-K^0_S, B+→K+K−K+B^+ \rightarrow K^+K^-K^+, and B+→KS0KS0K+B^+ \to K^0_S K^0_S K^+, and measure CP-violating parameters and partial branching fractions. The results are based on a data sample of approximately 470×106470\times 10^6 BBˉB\bar{B} decays, collected with the BABAR detector at the PEP-II asymmetric-energy BB factory at the SLAC National Accelerator Laboratory. For B+→K+K−K+B^+ \to K^+K^-K^+, we find a direct CP asymmetry in B+→ϕ(1020)K+B^+ \to \phi(1020)K^+ of ACP=(12.8±4.4±1.3)A_{CP}= (12.8\pm 4.4 \pm 1.3)%, which differs from zero by 2.8σ2.8 \sigma. For B0→K+K−KS0B^0 \to K^+K^-K^0_S, we measure the CP-violating phase ÎČeff(ϕ(1020)KS0)=(21±6±2)∘\beta_{\rm eff} (\phi(1020)K^0_S) = (21\pm 6 \pm 2)^\circ. For B+→KS0KS0K+B^+ \to K^0_S K^0_S K^+, we measure an overall direct CP asymmetry of ACP=(4−5+4±2)A_{CP} = (4 ^{+4}_{-5} \pm 2)%. We also perform an angular-moment analysis of the three channels, and determine that the fX(1500)f_X(1500) state can be described well by the sum of the resonances f0(1500)f_0(1500), f2â€Č(1525)f_2^{\prime}(1525), and f0(1710)f_0(1710).Comment: 35 pages, 68 postscript figures. v3 - minor modifications to agree with published versio

    Branching fraction and form-factor shape measurements of exclusive charmless semileptonic B decays, and determination of |V_{ub}|

    Get PDF
    We report the results of a study of the exclusive charmless semileptonic decays, B^0 --> pi^- l^+ nu, B^+ --> pi^0 l^+ nu, B^+ --> omega l^+ nu, B^+ --> eta l^+ nu and B^+ --> eta^' l^+ nu, (l = e or mu) undertaken with approximately 462x10^6 B\bar{B} pairs collected at the Upsilon(4S) resonance with the BABAR detector. The analysis uses events in which the signal B decays are reconstructed with a loose neutrino reconstruction technique. We obtain partial branching fractions in several bins of q^2, the square of the momentum transferred to the lepton-neutrino pair, for B^0 --> pi^- l^+ nu, B^+ --> pi^0 l^+ nu, B^+ --> omega l^+ nu and B^+ --> eta l^+ nu. From these distributions, we extract the form-factor shapes f_+(q^2) and the total branching fractions BF(B^0 --> pi^- l^+ nu) = (1.45 +/- 0.04_{stat} +/- 0.06_{syst})x10^-4 (combined pi^- and pi^0 decay channels assuming isospin symmetry), BF(B^+ --> omega l^+ nu) = (1.19 +/- 0.16_{stat} +/- 0.09_{syst})x10^-4 and BF(B^+ --> eta l^+ nu) = (0.38 +/- 0.05_{stat} +/- 0.05_{syst})x10^-4. We also measure BF(B^+ --> eta^' l^+ nu) = (0.24 +/- 0.08_{stat} +/- 0.03_{syst})x10^-4. We obtain values for the magnitude of the CKM matrix element V_{ub} by direct comparison with three different QCD calculations in restricted q^2 ranges of B --> pi l^+ nu decays. From a simultaneous fit to the experimental data over the full q^2 range and the FNAL/MILC lattice QCD predictions, we obtain |V_{ub}| = (3.25 +/- 0.31)x10^-3, where the error is the combined experimental and theoretical uncertainty.Comment: 35 pages, 14 figures, submitted to PR

    Observation of time-reversal violation in the B0 meson system

    Get PDF
    The individually named authors work collectively as The BABAR Collaboration. Copyright @ 2012 American Physical Society.Although CP violation in the B meson system has been well established by the B factories, there has been no direct observation of time-reversal violation. The decays of entangled neutral B mesons into definite flavor states (B0 or BÂŻÂŻÂŻ0), and J/ψK0L or ccÂŻK0S final states (referred to as B+ or B−), allow comparisons between the probabilities of four pairs of T-conjugated transitions, for example, BÂŻÂŻÂŻ0→B− and B−→BÂŻÂŻÂŻ0, as a function of the time difference between the two B decays. Using 468×106 BBÂŻÂŻÂŻ pairs produced in ΄(4S) decays collected by the BABAR detector at SLAC, we measure T-violating parameters in the time evolution of neutral B mesons, yielding ΔS+T=−1.37±0.14(stat)±0.06(syst) and ΔS−T=1.17±0.18(stat)±0.11(syst). These nonzero results represent the first direct observation of T violation through the exchange of initial and final states in transitions that can only be connected by a T-symmetry transformation.DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG(Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MINECO (Spain), STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel)
    • 

    corecore