81 research outputs found

    Una reflexión sobre la importancia de la enseñanza de la shoá en Argentina

    Get PDF
    Este ensayo propone compartir algunos dilemas encontrados al momento de redactar un Proyecto de Ley para la incorporación de la temática Holocausto – Shoá en los contenidos de los currículos escolares de la provincia de Buenos Aires. Finalizada la tarea, se hizo necesario dar cuenta de algunos problemas que fueron surgiendo a lo largo del trabajo. Una de las cuestiones prioritarias quedó trazada cuando apareció la pregunta sobre ¿Por qué debería ser el Holocausto Judío un tema de enseñanza vigente en las sociedades presentes? Esta indagación suscitó un debate que llevó a desnaturalizar el acuerdo básico y común que había sido sostenido por los miembros de esta Comisión en una primera instancia. Si se pretendía que se reconociera la enseñanza del Holocausto como un tema de importancia para ser incorporado dentro del currículo de las escuelas, se debía considerar cuáles son los argumentos fundamentales que sostienen dicho tema. Es por ello que en este escrito proponemos dejar a un lado la cuestión del cómo llevar acabo la incorporación del Holocausto (en el que se debería trabajar rigurosamente con los contenidos de cada ciclo de la educación primaria, secundaria y superior), para dar lugar a un análisis profundo y específico de los ‘dilemas educativos a la hora de enseñar la temática del Holocausto-Shoá.Facultad de Periodismo y Comunicación Socia

    The G2A Receptor Controls Polarization of Macrophage by Determining Their Localization Within the Inflamed Tissue

    Get PDF
    Macrophages are highly versatile cells, which acquire, depending on their microenvironment, pro- (M1-like), or antiinflammatory (M2-like) phenotypes. Here, we studied the role of the G-protein coupled receptor G2A (GPR132), in chemotactic migration and polarization of macrophages, using the zymosan-model of acute inflammation. G2A-deficient mice showed a reduced zymosan-induced thermal hyperalgesia, which was reversed after macrophage depletion. Fittingly, the number of M1-like macrophages was reduced in the inflamed tissue in G2A-deficient mice. However, G2A activation was not sufficient to promote M1-polarization in bone marrow-derived macrophages. While the number of monocyte-derived macrophages in the inflamed paw was not altered, G2A-deficient mice had less macrophages in the direct vicinity of the origin of inflammation, an area marked by the presence of zymosan, neutrophil accumulation and proinflammatory cytokines. Fittingly neutrophil efferocytosis was decreased in G2A-deficient mice and several lipids, which are released by neutrophils and promote G2A-mediated chemotaxis, were increased in the inflamed tissue. Taken together, G2A is necessary to position macrophages in the proinflammatory microenvironment surrounding the center of inflammation. In absence of G2A the macrophages are localized in an antiinflammatory microenvironment and macrophage polarization is shifted toward M2-like macrophages

    Chondroprotection by urocortin involves blockade of the mechanosensitive ion channel Piezo1

    Get PDF
    Osteoarthritis (OA) is characterised by progressive destruction of articular cartilage and chondrocyte cell death. Here, we show the expression of the endogenous peptide urocortin1 (Ucn1) and two receptor subtypes, CRF-R1 and CRF-R2, in primary human articular chondrocytes (AC) and demonstrate its role as an autocrine/paracrine pro-survival factor. This effect could only be removed using the CRF-R1 selective antagonist CP-154526, suggesting Ucn1 acts through CRF-R1 when promoting chondrocyte survival. This cell death was characterised by an increase in p53 expression, and cleavage of caspase 9 and 3. Antagonism of CRF-R1 with CP-154526 caused an accumulation of intracellular calcium (Ca2+) over time and cell death. These effects could be prevented with the non-selective cation channel blocker Gadolinium (Gd3+). Therefore, opening of a non-selective cation channel causes cell death and Ucn1 maintains this channel in a closed conformation. This channel was identified to be the mechanosensitive channel Piezo1. We go on to determine that this channel inhibition by Ucn1 is mediated initially by an increase in cyclic adenosine monophosphate (cAMP) and a subsequent inactivation of phospholipase A2 (PLA2), whose metabolites are known to modulate ion channels. Knowledge of these novel pathways may present opportunities for interventions that could abrogate the progression of OA

    Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes

    Get PDF
    BACKGROUND: The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. METHODOLOGY/PRINCIPAL FINDINGS: We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles were isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. CONCLUSIONS: These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment

    The search for translational pain outcomes to refine analgesic development: Where did we come from and where are we going?

    Get PDF
    Pain measures traditionally used in rodents record mere reflexes evoked by sensory stimuli; the results thus may not fully reflect the human pain phenotype. Alterations in physical and emotional functioning, pain-depressed behaviors and facial pain expressions were recently proposed as additional pain outcomes to provide a more accurate measure of clinical pain in rodents, and hence to potentially enhance analgesic drug development. We aimed to review how preclinical pain assessment has evolved since the development of the tail flick test in 1941, with a particular focus on a critical analysis of some nonstandard pain outcomes, and a consideration of how sex differences may affect the performance of these pain surrogates. We tracked original research articles in Medline for the following periods: 1973-1977, 1983-1987, 1993-1997, 2003-2007, and 2014-2018. We identified 606 research articles about alternative surrogate pain measures, 473 of which were published between 2014 and 2018. This indicates that preclinical pain assessment is moving toward the use of these measures, which may soon become standard procedures in preclinical pain laboratories.FPU grant from the Spanish Ministry of Education, Culture and SportsSpanish Ministry of Economy and Competitiveness (MINECO, grant SAF2016-80540-R)Ramón Areces FoundationJunta de Andalucía (grant CTS 109)Esteve PharmaceuticalsEuropean Regional Development Fund (ERDF

    Proton-sensing GPCRs in health and disease

    No full text
    The group of proton-sensing G-protein coupled receptors (GPCRs) consists of the four receptors GPR4, TDAG8 (GPR65), OGR1 (GPR68), and G2A (GPR132). These receptors are cellular sensors of acidification, a property that has been attributed to the presence of crucial histidine residues. However, the pH detection varies considerably among the group of proton-sensing GPCRs and ranges from pH of 5.5 to 7.8. While the proton-sensing GPCRs were initially considered to detect acidic cellular environments in the context of inflammation, recent observations have expanded our knowledge about their physiological and pathophysiological functions and many additional individual and unique features have been discovered that suggest a more differentiated role of these receptors in health and disease. It is known that all four receptors contribute to different aspects of tumor biology, cardiovascular physiology, and asthma. However, apart from their overlapping functions, they seem to have individual properties, and recent publications identify potential roles of individual GPCRs in mechanosensation, intestinal inflammation, oncoimmunological interactions, hematopoiesis, as well as inflammatory and neuropathic pain. Here, we put together the knowledge about the biological functions and structural features of the four proton-sensing GPCRs and discuss the biological role of each of the four receptors individually. We explore all currently known pharmacological modulators of the four receptors and highlight potential use. Finally, we point out knowledge gaps in the biological and pharmacological context of proton-sensing GPCRs that should be addressed by future studies

    A 2-oxoacid dehydrogenase complex of Haloferax volcanii is essential for growth on isoleucine but not on other branched-chain amino acids

    No full text
    The halophilic archaeon Haloferax volcanii contains three operons encoding 2-oxoacid dehydrogenase complexes (OADHCs) OADHC1-OADHC3. However, the biological role of these OADHCs is not known as previous studies have demonstrated that they cannot use any of the known OADHC substrates. Even the construction of single mutants in all three oadhc operons, reported recently, could not identify a substrate. Therefore, all three possible double mutants and a triple mutant were generated, and single, double and triple mutants were compared to the wild-type. The four mutants devoid of a functional OADHC1 had a reduced growth yield during nitrate-respirative growth on tryptone. A metabolome analysis of the medium after growth of the triple mutant in comparison to the wild-type revealed that the mutant was unable to degrade isoleucine and leucine, in contrast to the wild-type. It was shown that oadhc1 mutants were unable to grow in synthetic medium on isoleucine, in contrast to the other mutants and the isogenic parent strain. However, all strains grew indistinguishably on valine and leucine. The transcript of the oadhc1 operon was highly induced during growth on isoleucine. However, attempts to detect enzymic activity were unsuccessful, while the branched-chain OADHC (BCDHC) of Pseudomonas putida could be measured easily. Therefore, the growth capability of the triple mutant and the wild-type on the two first degradation intermediates of isoleucine was tested and provided further evidence that OADHC is involved in isoleucine degradation. Taken together, the results indicate that OADHC1 is a specialized BCDHC that uses only one (or maximally two) of the three branched-chain 2-oxoacids, in contrast to BCDHCs from other species

    TRP-channels as key integrators of lipid pathways in nociceptive neurons.

    No full text
    TRP-channels are the most prominent family of ligand-gated ion channels for pain perception. In sensory neurons, TRPV1-V4, TRPA1 and TRPM8 are expressed and are responsible for the conversion of external stimuli to painful sensations. Under pathophysiological conditions, excessive activity of TRP-channels leads to mechanical allodynia and thermal hyperalgesia. Among the endogenous TRP-channel sensitizers, activators and inhibitors, more than 50 arachidonic acid- and linoleic acid-metabolites from the COX-, LOX- and CYP-pathways, as well as lysophospholipids and isoprenoids can be found. As a consequence, these lipids represent the vast majority of endogenous TRP-channel modulators in sensory neurons. Although the precise mechanisms of TRP-channel modulation by most lipids are still unknown, it became clear that lipids can either bind directly to the target TRP-channel or modulate TRP-channels indirectly by activating G-protein coupled receptors. Thus, TRP-channels seem to be key sensors for lipids, integrating and interpreting incoming signals from the different metabolic lipid pathways. Here, we discuss the specific properties of the currently known endogenous lipid-derived TRP-channel modulators concerning their ability to activate or inhibit TRP-channels, the molecular mechanisms of lipid/TRP-channel interactions and specific TRP-regulatory characteristics of the individual lipid families

    The FKBP51 Inhibitor SAFit2 Restores the Pain-Relieving C16 Dihydroceramide after Nerve Injury

    No full text
    Neuropathic pain is a pathological pain state with a broad symptom scope that affects patients after nerve injuries, but it can also arise after infections or exposure to toxic substances. Current treatment possibilities are still limited because of the low efficacy and severe adverse effects of available therapeutics, highlighting an emerging need for novel analgesics and for a detailed understanding of the pathophysiological alterations in the onset and maintenance of neuropathic pain. Here, we show that the novel and highly specific FKBP51 inhibitor SAFit2 restores lipid signaling and metabolism in nervous tissue after nerve injury. More specifically, we identify that SAFit2 restores the levels of the C16 dihydroceramide, which significantly reduces the sensitization of the pain-mediating TRPV1 channel and subsequently the secretion of the pro-inflammatory neuropeptide CGRP in primary sensory neurons. Furthermore, we show that the C16 dihydroceramide is capable of reducing acute thermal hypersensitivity in a capsaicin mouse model. In conclusion, we report for the first time the C16 dihydroceramide as a novel and crucial lipid mediator in the context of neuropathic pain as it has analgesic properties, contributing to the pain-relieving properties of SAFit2
    corecore