311 research outputs found

    First Neutrino Observations from the Sudbury Neutrino Observatory

    Get PDF
    The first neutrino observations from the Sudbury Neutrino Observatory are presented from preliminary analyses. Based on energy, direction and location, the data in the region of interest appear to be dominated by 8B solar neutrinos, detected by the charged current reaction on deuterium and elastic scattering from electrons, with very little background. Measurements of radioactive backgrounds indicate that the measurement of all active neutrino types via the neutral current reaction on deuterium will be possible with small systematic uncertainties. Quantitative results for the fluxes observed with these reactions will be provided when further calibrations have been completed.Comment: Latex, 7 pages, 10 figures, Invited paper at Neutrino 2000 Conference, Sudbury, Canada, June 16-21, 2000 to be published in the Proceeding

    Measurement of the rate of nu_e + d --> p + p + e^- interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory

    Get PDF
    Solar neutrinos from the decay of 8^8B have been detected at the Sudbury Neutrino Observatory (SNO) via the charged current (CC) reaction on deuterium and by the elastic scattering (ES) of electrons. The CC reaction is sensitive exclusively to nu_e's, while the ES reaction also has a small sensitivity to nu_mu's and nu_tau's. The flux of nu_e's from ^8B decay measured by the CC reaction rate is \phi^CC(nu_e) = 1.75 +/- 0.07 (stat)+0.12/-0.11 (sys.) +/- 0.05(theor) x 10^6 /cm^2 s. Assuming no flavor transformation, the flux inferred from the ES reaction rate is \phi^ES(nu_x) = 2.39+/-0.34 (stat.)+0.16}/-0.14 (sys) x 10^6 /cm^2 s. Comparison of \phi^CC(nu_e) to the Super-Kamiokande Collaboration's precision value of \phi^ES(\nu_x) yields a 3.3 sigma difference, providing evidence that there is a non-electron flavor active neutrino component in the solar flux. The total flux of active ^8B neutrinos is thus determined to be 5.44 +/-0.99 x 10^6/cm^2 s, in close agreement with the predictions of solar models.Comment: 6 pages (LaTex), 3 figures, submitted to Phys. Rev. Letter

    Effects of environmental pollutants on the reproduction and welfare of ruminants

    Get PDF
    Anthropogenic pollutants comprise a wide range of synthetic organic compounds and heavy metals, which are dispersed throughout the environment, usually at low concentrations. Exposure of ruminants, as for all other animals, is unavoidable and while the levels of exposure to most chemicals are usually too low to induce any physiological effects, combinations of pollutants can act additively or synergistically to perturb multiple physiological systems at all ages but particularly in the developing foetus. In sheep, organs affected by pollutant exposure include the ovary, testis, hypothalamus and pituitary gland and bone. Reported effects of exposure include changes in organ weight and gross structure, histology and gene and protein expression but these changes are not reflected in changes in reproductive performance under the conditions tested. These results illustrate the complexity of the effects of endocrine disrupting compounds on the reproductive axis, which make it difficult to extrapolate between, or even within, species. Effects of pollutant exposure on the thyroid gland, immune, cardiovascular and obesogenic systems have not been shown explicitly, in ruminants, but work on other species suggests that these systems can also be perturbed. It is concluded that exposure to a mixture of anthropogenic pollutants has significant effects on a wide variety of physiological systems, including the reproductive system. Although this physiological insult has not yet been shown to lead to a reduction in ruminant gross performance, there are already reports indicating that anthropogenic pollutant exposure can compromise several physiological systems and may pose a significant threat to both reproductive performance and welfare in the longer term. At present, many potential mechanisms of action for individual chemicals have been identified but knowledge of factors affecting the rate of tissue exposure and of the effects of combinations of chemicals on physiological systems is poor. Nevertheless, both are vital for the identification of risks to animal productivity and welfare

    Assessing the Effects of Personal Characteristics and Context on U.S. House Speakers’ Leadership Styles, 1789-2006

    Get PDF
    Research on congressional leadership has been dominated in recent decades by contextual interpretations that see leaders’ behavior as best explained by the environment in which they seek to exercise leadership—particularly, the preference homogeneity and size of their party caucus. The role of agency is thus discounted, and leaders’ personal characteristics and leadership styles are underplayed. Focusing specifically on the speakers of the U.S. House of Representatives from the first to the 110th Congress, we construct measures of each speaker’s commitment to comity and leadership assertiveness. We find the scores reliable and then test the extent to which a speaker’s style is the product of both political context and personal characteristics. Regression estimates on speakers’ personal assertiveness scores provide robust support for a context-plus-personal characteristics explanation, whereas estimates of their comity scores show that speakers’ personal backgrounds trump context

    A Low T Regulatory Cell Response May Contribute to Both Viral Control and Generalized Immune Activation in HIV Controllers

    Get PDF
    HIV-infected individuals maintaining undetectable viremia in the absence of therapy (HIV controllers) often maintain high HIV-specific T cell responses, which has spurred the development of vaccines eliciting HIV-specific T cell responses. However, controllers also often have abnormally high T cell activation levels, potentially contributing to T cell dysfunction, CD4+ T cell depletion, and non-AIDS morbidity. We hypothesized that a weak T regulatory cell (Treg) response might contribute to the control of viral replication in HIV controllers, but might also contribute to generalized immune activation, contributing to CD4+ T cell loss. To address these hypotheses, we measured frequencies of activated (CD38+ HLA-DR+), regulatory (CD4+CD25+CD127dim), HIV-specific, and CMV-specific T cells among HIV controllers and 3 control populations: HIV-infected individuals with treatment-mediated viral suppression (ART-suppressed), untreated HIV-infected “non-controllers” with high levels of viremia, and HIV-uninfected individuals. Despite abnormally high T cell activation levels, controllers had lower Treg frequencies than HIV-uninfected controls (P = 0.014). Supporting the propensity for an unusually low Treg response to viral infection in HIV controllers, we observed unusually high CMV-specific CD4+ T cell frequencies and a strong correlation between HIV-specific CD4+ T cell responses and generalized CD8+ T cell activation levels in HIV controllers (P≤0.001). These data support a model in which low frequencies of Tregs in HIV controllers may contribute to an effective adaptive immune response, but may also contribute to generalized immune activation, potentially contributing to CD4 depletion

    Mechanisms of T cell organotropism

    Get PDF
    F.M.M.-B. is supported by the British Heart Foundation, the Medical Research Council of the UK and the Gates Foundation

    The Sudbury Neutrino Observatory

    Full text link
    The Sudbury Neutrino Observatory is a second generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and epsf style files. For additional information about SNO see http://www.sno.phy.queensu.ca . This version has some new reference

    Measurement of the νe\nu_e and Total 8^{8}B Solar Neutrino Fluxes with the Sudbury Neutrino Observatory Phase I Data Set

    Get PDF
    This article provides the complete description of results from the Phase I data set of the Sudbury Neutrino Observatory (SNO). The Phase I data set is based on a 0.65 kt-year exposure of heavy water to the solar 8^8B neutrino flux. Included here are details of the SNO physics and detector model, evaluations of systematic uncertainties, and estimates of backgrounds. Also discussed are SNO's approach to statistical extraction of the signals from the three neutrino reactions (charged current, neutral current, and elastic scattering) and the results of a search for a day-night asymmetry in the νe\nu_e flux. Under the assumption that the 8^8B spectrum is undistorted, the measurements from this phase yield a solar νe\nu_e flux of ϕ(νe)=1.760.05+0.05(stat.)0.09+0.09(syst.)×106\phi(\nu_e) = 1.76^{+0.05}_{-0.05}{(stat.)}^{+0.09}_{-0.09} {(syst.)} \times 10^{6} cm2^{-2} s1^{-1}, and a non-νe\nu_e component ϕ(νμτ)=3.410.45+0.45(stat.)0.45+0.48(syst.)×106\phi(\nu_{\mu\tau}) = 3.41^{+0.45}_{-0.45}{(stat.)}^{+0.48}_{-0.45} {(syst.)} \times 10^{6} cm2^{-2} s1^{-1}. The sum of these components provides a total flux in excellent agreement with the predictions of Standard Solar Models. The day-night asymmetry in the νe\nu_e flux is found to be Ae=7.0±4.9(stat.)1.2+1.3A_{e} = 7.0 \pm 4.9 \mathrm{(stat.)^{+1.3}_{-1.2}}% \mathrm{(sys.)}, when the asymmetry in the total flux is constrained to be zero.Comment: Complete (archival) version of SNO Phase I results. 78 pages, 46 figures, 34 table
    corecore