13 research outputs found

    Fundamental role of C1q in autoimmunity and inflammation

    Get PDF
    C1q, historically viewed as the initiating component of the classical complement pathway, also exhibits a variety of complement-independent activities in both innate and acquired immunity. Recent studies focusing on C1q\u27s suppressive role in the immune system have provided new insight into how abnormal C1q expression and bioactivity may contribute to autoimmunity. In particular, molecular networks involving C1q interactions with cell surface receptors and other ligands are emerging as mechanisms involved in C1q\u27s modulation of immunity. Here, we discuss the role of C1q in controlling immune cell function, including recently elucidated mechanisms of action, and suggest how these processes are critical for maintaining tissue homeostasis under steady-state conditions and in preventing autoimmunity

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images

    Get PDF
    Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI), the converted MCI (cMCI), and the normal control (NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM). An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCI–cMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCI–NC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI–NC comparison. The best performances obtained by the SVM classifier using the essential features were 5–40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and predict the risk of its conversion to Alzheimer's disease

    Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients

    Get PDF
    Recent developments of tau Positron Emission Tomography (PET) allows assessment of regional neurofibrillary tangles (NFTs) deposition in human brain. Among the tau PET molecular probes, 18F-AV1451 is characterized by high selectivity for pathologic tau aggregates over amyloid plaques, limited non-specific binding in white and gray matter, and confined off-target binding. The objectives of the study are (1) to quantitatively characterize regional brain tau deposition measured by 18F-AV1451 PET in cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD participants; (2) to evaluate the correlations between cerebrospinal fluid (CSF) biomarkers or Mini-Mental State Examination (MMSE) and 18F-AV1451 PET standardized uptake value ratio (SUVR); and (3) to evaluate the partial volume effects on 18F-AV1451 brain uptake.Methods: The study included total 115 participants (CN = 49, MCI = 58, and AD = 8) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed 18F-AV1451 PET images, structural MRIs, and demographic and clinical assessments were downloaded from the ADNI database. A reblurred Van Cittertiteration method was used for voxelwise partial volume correction (PVC) on PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. The parametric images of 18F-AV1451 SUVR relative to cerebellum were calculated. The ROI SUVR measurements from PVC and non-PVC SUVR images were compared. The correlation between ROI 18F-AV1451 SUVR and the measurements of MMSE, CSF total tau (t-tau), and phosphorylated tau (p-tau) were also assessed.Results:18F-AV1451 prominently specific binding was found in the amygdala, entorhinal cortex, parahippocampus, fusiform, posterior cingulate, temporal, parietal, and frontal brain regions. Most regional SUVRs showed significantly higher uptake of 18F-AV1451 in AD than MCI and CN participants. SUVRs of small regions like amygdala, entorhinal cortex and parahippocampus were statistically improved by PVC in all groups (p < 0.01). Although there was an increasing tendency of 18F-AV-1451 SUVRs in MCI group compared with CN group, no significant difference of 18F-AV1451 deposition was found between CN and MCI brains with or without PVC (p > 0.05). Declined MMSE score was observed with increasing 18F-AV1451 binding in amygdala, entorhinal cortex, parahippocampus, and fusiform. CSF p-tau was positively correlated with 18F-AV1451 deposition. PVC improved the results of 18F-AV-1451 tau deposition and correlation studies in small brain regions.Conclusion: The typical deposition of 18F-AV1451 tau PET imaging in AD brain was found in amygdala, entorhinal cortex, fusiform and parahippocampus, and these regions were strongly associated with cognitive impairment and CSF biomarkers. Although more deposition was observed in MCI group, the 18F-AV-1451 PET imaging could not differentiate the MCI patients from CN population. More tau deposition related to decreased MMSE score and increased level of CSF p-tau, especially in ROIs of amygdala, entorhinal cortex and parahippocampus. PVC did improve the results of tau deposition and correlation studies in small brain regions and suggest to be routinely used in 18F-AV1451 tau PET quantification

    Sporozoite Route of Infection Influences in Vitro var Gene Transcription of Plasmodium falciparum Parasites from Controlled Human Infections

    No full text
    Background. Antigenic variation in Plasmodium falciparum is mediated by the multicopy var gene family. Each parasite possesses about 60 var genes, and switching between active var loci results in antigenic variation. In the current study, the effect of mosquito and host passage on in vitro var gene transcription was investigated. Methods. Thirty malaria-naive individuals were inoculated by intradermal or intravenous injection with cryopreserved, isogenic NF54 P. falciparum sporozoites (PfSPZ) generated from 1 premosquito culture. Microscopic parasitemia developed in 22 individuals, and 21 in vitro cultures were established. The var gene transcript levels were determined in early and late postpatient cultures and in the premosquito culture. Results. At the early time point, all cultures preferentially transcribed 8 subtelomeric var genes. Intradermal infections had higher var gene transcript levels than intravenous infections and a significantly longer intrahost replication time (P =.03). At the late time point, 9 subtelomeric and 8 central var genes were transcribed at the same levels in almost all cultures. Premosquito and late postpatient cultures transcribed the same subtelomeric and central var genes, except for var2csa. Conclusions. The duration of intrahost replication influences in vitro var gene transcript patterns. Differences between premosquito and postpatient cultures decrease with prolonged in vitro growth

    A public antibody lineage that potently inhibits malaria infection through dual binding to the circumsporozoite protein.

    Get PDF
    Immunization with attenuated Plasmodium falciparum sporozoites (PfSPZs) has been shown to be protective against malaria, but the features of the antibody response induced by this treatment remain unclear. To investigate this response in detail, we isolated IgM and IgG monoclonal antibodies from Tanzanian volunteers who were immunized with repeated injection of Sanaria PfSPZ Vaccine and who were found to be protected from controlled human malaria infection with infectious homologous PfSPZs. All isolated IgG monoclonal antibodies bound to P. falciparum circumsporozoite protein (PfCSP) and recognized distinct epitopes in its N terminus, NANP-repeat region, and C terminus. Strikingly, the most effective antibodies, as determined in a humanized mouse model, bound not only to the repeat region, but also to a minimal peptide at the PfCSP N-terminal junction that is not in the RTS,S vaccine. These dual-specific antibodies were isolated from different donors and were encoded by VH3-30 or VH3-33 alleles that encode tryptophan or arginine at position 52. Using structural and mutational data, we describe the elements required for germline recognition and affinity maturation. Our study provides potent neutralizing antibodies and relevant information for lineage-targeted vaccine design and immunization strategies

    Gene Copy-Number Variation and Associated Polymorphisms of Complement Component C4 in Human Systemic Lupus Erythematosus (SLE): Low Copy Number Is a Risk Factor for and High Copy Number Is a Protective Factor against SLE Susceptibility in European Americans

    Get PDF
    Interindividual gene copy-number variation (CNV) of complement component C4 and its associated polymorphisms in gene size (long and short) and protein isotypes (C4A and C4B) probably lead to different susceptibilities to autoimmune disease. We investigated the C4 gene CNV in 1,241 European Americans, including patients with systemic lupus erythematosus (SLE), their first-degree relatives, and unrelated healthy subjects, by definitive genotyping and phenotyping techniques. The gene copy number (GCN) varied from 2 to 6 for total C4, from 0 to 5 for C4A, and from 0 to 4 for C4B. Four copies of total C4, two copies of C4A, and two copies of C4B were the most common GCN counts, but each constituted only between one-half and three-quarters of the study populations. Long C4 genes were strongly correlated with C4A (R=0.695; P<.0001). Short C4 genes were correlated with C4B (R=0.437; P<.0001). In comparison with healthy subjects, patients with SLE clearly had the GCN of total C4 and C4A shifting to the lower side. The risk of SLE disease susceptibility significantly increased among subjects with only two copies of total C4 (patients 9.3%; unrelated controls 1.5%; odds ratio [OR] = 6.514; P=.00002) but decreased in those with ⩾5 copies of C4 (patients 5.79%; controls 12%; OR=0.466; P=.016). Both zero copies (OR=5.267; P=.001) and one copy (OR=1.613; P=.022) of C4A were risk factors for SLE, whereas ⩾3 copies of C4A appeared to be protective (OR=0.574; P=.012). Family-based association tests suggested that a specific haplotype with a single short C4B in tight linkage disequilibrium with the −308A allele of TNFA was more likely to be transmitted to patients with SLE. This work demonstrates how gene CNV and its related polymorphisms are associated with the susceptibility to a human complex disease
    corecore