965 research outputs found
A smartphone-based Teleradiology system
The development of a teleradiology application for remote monitoring and processing of patient image data using 2nd generation mobile devices with enhanced network services, is of extreme interest, especially when the final means of display is a smartphone, a very light and compact handheld device. In the following paper the development of applications, that are responsible for remote monitoring and processing of medical images, is investigated
PDA-based system for monitoring electromagnetic signals
The development of a mobile system for receiving, storing, and displaying electromagnetic-signals (EM) at specific frequencies using mobile devices and wireless networks, is of extreme interest, especially when the final means of display is a PDA, a very light and compact handheld device. In the present study, an application is developed for remote monitoring of EM-signals preceding seismic events. The particular advantages and challenges faced when developing such application are explained and future work in this area is presented
Tensor Regression with Applications in Neuroimaging Data Analysis
Classical regression methods treat covariates as a vector and estimate a
corresponding vector of regression coefficients. Modern applications in medical
imaging generate covariates of more complex form such as multidimensional
arrays (tensors). Traditional statistical and computational methods are proving
insufficient for analysis of these high-throughput data due to their ultrahigh
dimensionality as well as complex structure. In this article, we propose a new
family of tensor regression models that efficiently exploit the special
structure of tensor covariates. Under this framework, ultrahigh dimensionality
is reduced to a manageable level, resulting in efficient estimation and
prediction. A fast and highly scalable estimation algorithm is proposed for
maximum likelihood estimation and its associated asymptotic properties are
studied. Effectiveness of the new methods is demonstrated on both synthetic and
real MRI imaging data.Comment: 27 pages, 4 figure
The Reactome pathway Knowledgebase
The Reactome Knowledgebase (www.reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations-an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression pattern surveys or somatic mutation catalogues from tumour cells. Over the last two years we redeveloped major components of the Reactome web interface to improve usability, responsiveness and data visualization. A new pathway diagram viewer provides a faster, clearer interface and smooth zooming from the entire reaction network to the details of individual reactions. Tool performance for analysis of user datasets has been substantially improved, now generating detailed results for genome-wide expression datasets within seconds. The analysis module can now be accessed through a RESTFul interface, facilitating its inclusion in third party applications. A new overview module allows the visualization of analysis results on a genome-wide Reactome pathway hierarchy using a single screen page. The search interface now provides auto-completion as well as a faceted search to narrow result lists efficiently
Fat polygonal partitions with applications to visualization and embeddings
Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in Rd. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space: we give a polylog(¿)-approximation algorithm for embedding n-point ultrametrics into Rd with minimum distortion, where ¿ denotes the spread of the metric. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio
Temporal Clustering
We study the problem of clustering sequences of unlabeled point sets taken from a common metric space. Such scenarios arise naturally in applications where a system or process is observed in distinct time intervals, such as biological surveys and contagious disease surveillance. In this more general setting existing algorithms for classical (i.e. static) clustering problems are not applicable anymore.
We propose a set of optimization problems which we collectively refer to as temporal clustering. The quality of a solution to a temporal clustering instance can be quantified using three parameters: the number of clusters k, the spatial clustering cost r, and the maximum cluster displacement delta between consecutive time steps. We consider spatial clustering costs which generalize the well-studied k-center, discrete k-median, and discrete k-means objectives of classical clustering problems. We develop new algorithms that achieve trade-offs between the three objectives k, r, and delta. Our upper bounds are complemented by inapproximability results
Temporal Hierarchical Clustering
We study hierarchical clusterings of metric spaces that change over time. This is a natural geo- metric primitive for the analysis of dynamic data sets. Specifically, we introduce and study the problem of finding a temporally coherent sequence of hierarchical clusterings from a sequence of unlabeled point sets. We encode the clustering objective by embedding each point set into an ultrametric space, which naturally induces a hierarchical clustering of the set of points. We enforce temporal coherence among the embeddings by finding correspondences between successive pairs of ultrametric spaces which exhibit small distortion in the Gromov-Hausdorff sense. We present both upper and lower bounds on the approximability of the resulting optimization problems
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
- …
