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Abstract
We study hierarchical clusterings of metric spaces that change over time. This is a natural geo-
metric primitive for the analysis of dynamic data sets. Specifically, we introduce and study the
problem of finding a temporally coherent sequence of hierarchical clusterings from a sequence of
unlabeled point sets. We encode the clustering objective by embedding each point set into an ul-
trametric space, which naturally induces a hierarchical clustering of the set of points. We enforce
temporal coherence among the embeddings by finding correspondences between successive pairs
of ultrametric spaces which exhibit small distortion in the Gromov-Hausdorff sense. We present
both upper and lower bounds on the approximability of the resulting optimization problems.
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1 Introduction

Clustering is a primitive in data analysis which simultaneously serves to summarize data
and elucidate its hidden structure. In its most common form a clustering problem consists of
a pair (P, k), where P is a metric space, and k indicates the desired number of clusters. The
goal of the problem is to try to find a partition of the points of P into k sets such that some
objective is minimized. Because of the fundamental nature of such a primitive, clustering
enjoys broad application in a variety of settings and an extensive body of work exists to
explain, refine, and adapt its methodology [3, 8, 12, 14, 18, 19].

Having to decide the number of clusters in advance can be a source of difficulty in practice.
When faced with this problem, one common approach is to use hierarchical clustering to
produce a parameter free summary of the input. That is, instead of producing a single
partition of the input points, the goal is to find a rooted tree (called a dendrogram) where
the leaves are the points of P and the internal nodes of the tree indicate the distance at
which its subtrees merge.
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Figure 1 The dendrogram of an ultrametric, (U, µ), on points {a, b, c, d, e}. The points of µ are
the leaves of the dendrogram (height 0). The distance between two points x, y ∈ U is given by the
height of their lowest common ancestor, lca(x, y), that is at µ(x, y). The dashed cut at r induces
a natural clustering {{a}, {b, c}, {d, e}} of the points of U by grouping points which belong to the
same subtree. Each of these groups are contained in disjoint balls of radius r.

We aim to address the analogous question of how to avoid having to decide the number
of clusters in advance in the case of dynamic data. Here, we adopt the temporal clustering
framework of [9, 10]. In this framework, the input is a sequence of clustering problems, and
the goal is to ensure that the solutions of successive instances remain close according to
some objective. This differs from incremental [2, 7] and kinetic clustering [1, 4, 15, 17] in
that there is no constraint that the clustering instances in the input must be incrementally
related. Further, an optimal sequence of spatial clusterings is not automatically a low cost
solution to the temporal clustering instance.

In this paper we present a natural adaptation of hierarchical clustering to the temporal
setting. We study the problem of finding a temporally coherent sequence of hierarchical
clusterings from a sequence of unlabeled point sets. Our goal is to produce a sequence of
hierarchical clusterings (dendrograms) corresponding to each set of points in the input such
that successive pairs of clusterings have similar dendrograms. We show that the corresponding
optimization problem is NP-hard. However, a polynomial-time approximation algorithm
exists when the metric spaces in the input are taken from a common ambient metric space.
We explore the properties of this algorithm and find that it is unstable under perturbations
of the metric. We then show how to restore stability with only a slight loss in the guarantee.

Problem formulation
An idea used in this paper is that we may hierarchically cluster a metric space by trying to
find a low distortion embedding of it into an ultrametric. An ultrametric is a metric space
which satisfies a stronger version of the triangle inequality. Formally, an ultrametric space is
a metric space U = (X,µ) such that µ(x, z) ≤ max{µ(x, y), µ(y, z)}, for all x, y, z ∈ X.

Ultrametric spaces have interesting geometry. For instance, in an ultrametric all points
contained in a ball of radius r are centers of the ball. That is, for any q ∈ BU (p; r), we have
BU (q; r) = BU (p; r), where BM (p; r) denotes the ball of radius r about a point p in a metric
space M . Further, given any pair of balls B ⊆ U , B′ ⊆ U with non-empty intersection, one
has B ⊆ B′ or B′ ⊆ B. This simple fact implies that any ultrametric space has the structure
of a tree where items in a common subtree are close. That is, an ultrametric induces a
natural hierarchical clustering, commonly depicted as a dendrogram (see Figure 1).

Similarity of dendrograms. For dendrograms over sets of points with identical labelings
there is a natural dissimilarity measure given by comparing the merge heights for any pair of
corresponding points. Namely, maxu,u′∈P |h1(u, u′)− h2(u, u′)|, where h1, and h2 give the
merge heights for a respective pair of dendrograms.
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One immediate obstacle to adopting this formalization is that our model does not require
that the sets of points comprising the input have the same cardinality. For this reason, we
take the point of view that two dendrograms are similar if there exists a correspondence
between their leaves such that the merge heights of corresponding points are close. Formally,
a correspondence between U and V is a relation C ⊆ U ×V such that πU (C) = U , πV (C) = V .
Here, πU , πV denote the canonical projections of U × V to U and V (respectively). Further
we use the notation Corr(U, V ) to denote the set of correspondences between U , V . Given
a correspondence C between two sets of points P1, P2, we have the following dissimilarity
measure which accounts for differences in the merge heights of a pair of dendrograms under a
correspondence C. This measure is called the distortion [5], or the merge distortion distance
with respect to C [12], and is given by dis(h1, h2; C) := max(u,v),(u′,v′)∈C |h1(u, u′)−h2(v, v′)|.

Generalized version. Our goal, then, is not only to output a sequence of hierarchical
clusterings corresponding to the point sets of the input, but also to produce an interstitial
sequence of low distortion correspondences linking successive pairs of dendrograms. We
quantify the extent to which an ultrametric faithfully represents an input metric space under
the `∞ norm. Specifically, let U = (P, dU ), V = (P, dV ) be a pair of finite pseudometric
spaces on the same set of points. We define L∞(U, V ) = maxp,p′∈P |dU (p, p′)− dV (p, p′)|. In
other words, a pseudometric space V is a good fit for U (and vice-versa) whenever L∞(U, V )
is small.

Let M := (X, d) be a pseudometric space. If for any u, v, w ∈ X, we have d(u, v) ≤
max{d(u,w), d(w, v)} then we say that d is a pseudo-ultrametric andM is a pseudo-ultrametric
space. We now formally define this general version of the problem.

I Definition 1 (Temporal Hierarchical Clustering (Generalized Version)). LetM := {Mi}ti=1 be
a sequence of metric spaces, where for each i ∈ [t], Mi = (Pi, ·), and let χ, ρ ∈ R≥0. The goal
of the Generalized Temporal Hierarchical Clustering problem is to find a sequence
of pseudo-ultrametric spaces, {Ui := (Pi, µi)}ti=1 and a sequence of correspondences {Ci}t−1

i=1,
where for each i ∈ [t], we have L∞(Mi, Ui) ≤ χ, and for any i ∈ [t− 1], Ci ∈ Corr(Pi, Pi+1)
with dis(µi, µi+1; Ci) ≤ ρ. Such a clustering is called a Generalized (χ, ρ)-Clustering of
M.

We show in Section 4 that the Generalized Hierarchical Temporal Clustering
problem is NP-hard.

Local version. Absent the ambient metric space, the above notion of distortion would be
sufficient to capture the intuitive idea that consecutive hierarchical clusterings should be close.
However, it is easy to produce examples where symmetries in the input permit low-distortion
correspondences which are manifestly non-local in the ambient space. Thus it makes sense
to further require that any correspondence be local in the ambient metric. We say that a
correspondence C is δ-local provided that max(u,v)∈C d(u, v) ≤ δ, where d is the distance in
the ambient space.

We now formalize this version of the problem. Here, the input P := {Pi}ti=1, consists
of a sequence of unlabeled, finite, non-empty subsets of a metric space M . We call such
a sequence a temporal-sampling of M of length t, and refer to individual elements of the
sequence (Pi for some i ∈ [t]) as a level of P (see [9, 10]). The size of P is simply the sum
of the number of points in each level of P , that is

∑t
i=1 |Pi|. Let M = (X, d) be a metric

space. For any P ⊆ X we use the notation M [P ] to denote the restriction of M to P , that
is, M [P ] = (P, d

∣∣
P

). We have the following definition:

ISAAC 2017



28:4 Temporal Hierarchical Clustering

Figure 2 A δ-contiguous 4-labeling of P1, P2 ⊂ R2, P1 = {u1, u2, u3}, P2 = {v1, v2, v3}. Balls of
radius δ are drawn about the points of P1. Note that the labels used by points of P2 “come from”
points of P1 which are δ-close, demonstrating condition 2 of Definition 3. The symmetric condition
also holds. Further note that there is no requirement that |P1| = |P2|.

I Definition 2 (Temporal Hierarchical Clustering (Local Version)). Let P := {Pi}ti=1 be a
temporal-sampling over a metric spaceM = (X, d), and let χ, δ ∈ R≥0. The goal of the Local
Temporal Hierarchical Clustering problem is to find a sequence of pseudo-ultrametric
spaces, {Ui}ti=1, where for each i ∈ [t], Ui = (Pi, ·), and L∞(M [Pi], Ui) ≤ χ, together with
a sequence of correspondences {Ci}t−1

i=1 where for any i ∈ [t − 1], Ci ∈ Corr(Pi, Pi+1) with
max(u,v)∈Ci

d(u, v) ≤ δ. Such a clustering is called a Local (χ, δ)-Clustering.

While the general version of the problem is NP-hard, the local version is trivial and
can be computed in O(n2)-time by computing a correspondence minimizing the Hausdorff
distance for each pair of successive levels. We highlight this problem for expository purposes
as well as a prelude to a labeled version of the problem.

This version of the problem is further of interest in that it can be used to approximate
the general version such that the resulting distortion is bounded in terms of χ, and δ. We
discuss this topic further in Section 4.

Labeled version. There are already several drawbacks with previous versions of the problem
in regard to making concrete cluster assignments. In particular it is unclear how to coherently
assign cluster labels to points given a correspondence. Moreover, we must account for the
fact that the number of points can vary across levels. Taking the point of view that a good
labeling is one in which labels in successive levels remain close, we opt to allow points to
be given multiple labels. Doing so affords us additional bookkeeping to help ensure that
labelings for near by levels remain local, even across levels which require relatively few labels.

To this end, given a set P , a k-labeling of P is a function L : P → 2[k] such that
{L(p) : p ∈ P} is a partition of [k]. Informally, we say two labelings are δ-contiguous if the
copies of the same label in a pair of assignments are no farther than δ. We have the following
definition:

I Definition 3. Given a pair of sets P1, P2 of points from a metric space M , and a pair
k-labelings L1, L2 of P1, P2 (respectively), we say that L1 and L2 are δ-contiguous in M if
1. for all u ∈ P1, L1(u) ⊆

⋃
v∈BM (u,δ)∩P2

L2(v),
2. for all v ∈ P2, L2(v) ⊆

⋃
u∈BM (v,δ)∩P1

L1(u).
See Figure 2 for an example.

Since points can be multi-labeled, we need a tie-breaking rule to determine which label
applies. By convention we take the label of any set of points to be the smallest label among
all labels of points in the set. Moreover, a good solution should never use more than n labels
on an input of size n. We are now ready to define the main version of the problem.
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I Definition 4 (Temporal Hierarchical Clustering). Let P := {Pi}ti=1 be a temporal-sampling
of size n over a metric space M with distance, d, and let χ, δ ∈ R≥0. The goal of the
Temporal Hierarchical Clustering problem is to find a sequence of pseudo-ultrametric
spaces, {Ui}ti=1, such that for any i ∈ [t], L∞(M [Pi], Ui) ≤ χ, and a sequence of k-labelings,
{Li}ti=1, for k ≤ n, such that for any i ∈ [t− 1], Li, Li+1 are δ-contiguous. Such a clustering
is called a Labeled (χ, δ)-Clustering.

Overview. In Section 2 we show how to find an optimal solution to the local version of the
problem in O(n2)-time. Then, in Section 3, we give an O(n3)-time algorithm which converts
any Local (χ, δ)-Clustering into a Labeled (χ, δ)-Clustering. This combined with
Section 2 implies an optimal solution for the labeled version of the problem. In Section 4
we show that the general version is NP-hard, but observe that the local version provides an
approximate solution in the special case where the inputs comes from a common metric space.
In Section 5 we show that the optimal algorithms are unstable with respect to perturbations
of the metric, and how to ensure stability by changing the ultrametric construction. Last,
Section 6 contains an experiment.

2 Local Version

In this section we present a straightforward solution to the local version of temporal hierar-
chical clustering in O(n2)-time. We are not directly interested in the solution of this problem.
Instead, this section serves as a prelude to solving the labeled version.

Algorithm. The algorithm is trivial. Let A be a scheme for finding the `∞-nearest ultra-
metric to a metric. For each set of points in the input we use A to find an ultrametric.
To compute correspondences between successive levels Pi, Pi+1, we add all pairs of points
(u, v) ∈ Pi × Pi+1 such that u and v are at a distance of at most the Hausdorff distance of
Pi, Pi+1. Formally, the algorithm takes a temporal-sampling P = {Pi}ti=1 of a metric space
M as input and consists of the following steps:
Step 1: Fitting by ultrametrics. For each i ∈ [t], find an ultrametric Ui = A(M [Pi])
near to M [Pi] via a chosen scheme.

Step 2: Build correspondences. For each i ∈ [t− 1], compute
Ci = {(u, v) ∈ Pi × Pi+1 : d(u, v) ≤ dMH (Pi, Pi+1)}. Here, dMH denotes the Hausdorff
distance in the ambient metric space.

Step 3: Return
(
{Ui}ti=1, {Ci}

t−1
i=1
)
.

Analysis. Let n denote the size of the temporal sampling. In this section we argue that the
above algorithm returns an optimal solution in O(n2) time, provided that it is equipped with
a scheme for finding the `∞-nearest ultrametric to an n-point metric space in O(n2)-time.
The following theorem ensures that one exists.

I Theorem 5 (Farach-Colton Kannan Warnow [13]). Let M be an n-point metric space and
let U(M) denote the set of ultrametrics on the points of M . There exists an O(n2)-time
algorithm which finds arg minU∈U(M) L

∞(U,M).

We are now ready to prove the main theorem of this section.

I Theorem 6. Let P be a temporal-sampling of size n which admits a Local (χ, δ)-
Clustering. There exists an O(n2)-time algorithm returning a Local (χ, δ)-Clustering.

ISAAC 2017
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Proof. Let t denote the length of P , and M the ambient metric space. Run the algorithm of
Section 2 where A is the algorithm of Farach-Colton, Kannan, and Warnow [13]. Let {Ui}ti=1
denote the pseudo-ultrametrics in the output. By Theorem 5, χ′ = maxi∈[t] L

∞(Ui,M [Pi]) ≤
χ, as otherwise χ > χ′ would imply that for some level i ∈ [t], the algorithm of Theorem 5
fails to return an `∞-nearest ultrametric to Pi.

Let δ′ = maxi∈[t−1] d
M
H (Pi, Pi+1). We now argue that δ′ is smallest possible in the

sense that P admits a Local (χ′, δ′)-Clustering, but does not admit an Local (χ, δ)-
Clustering for any χ, when δ < δ′. Let Γ := {δ : P admits a Local(·, δ)−Clustering}.
First we show δ′ ≤ inf Γ. Fix any Local (·, δ)-Clustering, and let {Ci}t−1

i=1 be the associated
sequence of δ-local correspondences. Fix some 1 ≤ i < t and some p ∈ Pi. Since Ci is a
correspondence, πPi(Ci) = Pi, and thus there exists q ∈ Pi+1 such that (p, q) ∈ Ci. Since
Ci is δ-local it holds that d(p, q) ≤ δ, and we conclude d(p, Pi+1) ≤ δ. An analogous
argument for q ∈ Pi+1 implies d(Pi, q) ≤ δ. Thus, for 1 ≤ i < t, δ′ ≤ dMH (Pi, Pi+1) =
max

(
maxp∈Pi

d(p, Pi+1),maxq∈Pi+1 d(Pi, q)
)
≤ δ. Now we argue that δ′ is feasible. Fix

1 ≤ i < t. Since dH(Pi, Pi+1) ≤ δ′ it holds that for every point p ∈ Pi there exists qp ∈ Pi+1
such that d(p, qp) ≤ δ′. Construct a set C+

i = {(p, qp) : p ∈ Pi, qp ∈ Pi+1, and d(p, qp) ≤ δ′}.
Analogously construct a set C−i = {(pq, q) : q ∈ Pi+1, pq ∈ Pi, and d(pq, q) ≤ δ′}. The set
Ci := C+

i ∪ C
−
i is thus a δ′-local correspondence between Pi, Pi+1. Thus, it follows that

δ′ ∈ Γ.
The preceding two paragraphs show that the result is a Local (χ, δ)-Clustering. It

only remains to show the algorithm runs in O(n2)-time. Let ni = |Pi| for i ∈ [t]. Step 1 takes
O(n2)-time as finding the `∞-nearest ultrametric for level i can be done in O(n2

i )-time by
Theorem 5. Computing the inter-level Hausdorff distance and building the correspondence
for level i in Step 2 can both be done in O(n2

i )-time, for a total of O(n2)-time over all. J

3 Labeled Version

In this section we show how to convert a Local (χ, δ)-Clustering into a Labeled (χ, δ)-
Clustering in O(n3)-time by transforming a sequence of δ-local correspondences into a
sequence of pairwise δ-contiguous labelings.

Network flow. Drawing upon an idea in [9, 10], we employ minimum cost feasible flow
to find a δ-contiguous labeling with few labels. Formally, we construct the flow instance
as follows: Let P = {Pi}ti=1 be a temporal-sampling. Given the δ-local correspondences
of a Local (·, δ)-Clustering, {Ci}t−1

i=1, the following construction transforms P into a
flow network, F := F ({Ci}t−1

i=1), such that corresponding points in successive levels are
connected by a directed edge which points to the higher indexed level. Moreover, a source, s,
connects to each of the points in the first level, while the sink s′ is the target of a directed
edge from each point in Pt. Formally, let Vi(P ) = {(i, v) : v ∈ Pi}. For i ∈ [t − 1], let
Ei(P ) ⊆ Vi(P )× Vi+1(P ) such that ((i, u), (i+ 1, v)) ∈ Ei(P ) if and only if (u, v) ∈ Ci. The
vertices of F consist of s, s′, and the contents of V1(P ), . . . , Vt(P ). The edges of F consist of
the union of {s} × V1(P ), Vt(P ) × {s′}, and

⋃t−1
i=1 Ei(P ). Specifically, we seek an integral

flow with minimum flow value such that the in-flow of each vertex of
⋃t
i=1 Vi(P ) is at least

one.

Algorithm. The main idea is to view each correspondence as a bipartite graph. We
concatenate the sequence of correspondences together by merging overlapping vertices. This
allows us to interpret the sequence of correspondences as a graph. Our goal is then to
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decompose this graph into a path cover of small size, which we do by solving a flow instance.
Since this graph only contains edges between points which are close, the resulting labeling
will be contiguous. Formally, we perform the following steps:
Step 1: Constructing a flow instance. Given a sequence of δ-local correspondences of
a Local (·, δ)-Clustering, construct the minimum flow instance F := F ({Ci}t−1

i=1) as
defined above.

Step 2: Solve the flow instance. Find a minimum cost integral flow f in F .
Step 3: Decompose the flow. Greedily extract unit flows from f to construct a list of

paths {τi}ki=1.
Step 4: Construct label functions. Build label functions L1, . . . , Lt by initializing each

to the empty set. Next, for each τj ∈ {τi}ki=1, denote τj as the t point sequence p1, . . . , pt.
Append label j to L1(p1), . . . , Lt(pt).

Step 5: Output. Return the labelings L1, . . . , Lt.

Analysis. In this section we show that the above algorithm finds an optimal solution in
O(n3)-time on temporal samplings of size n. To this end we now argue that the above
network flow instance is feasible.

I Lemma 7. Let P = {Pi}ti=1 be a temporal-sampling. Given the δ-local correspondences
of a Local (·, δ)-Clustering, {Ci}t−1

i=1, the flow instance F := F ({Ci}t−1
i=1) is feasible with

value at most n.

Proof. For any 1 ≤ i ≤ t, any point p ∈ Pi can be extended to a path from P1 to Pt, by
iteratively extending the ends of the path via the correspondences. Construct a feasible flow
f by initializing f to be zero everywhere. Greedily extend points receiving no flow to paths
from P1 to Pt in the described manner, and increase the flow value of f along the path by 1.
It follows that f remains integral and satisfies all lower bounds of F . Since we flow at most 1
unit of flow per point of P , the value of f is at most n. J

The next theorem shows that the algorithm outputs an optimal clustering.

I Theorem 8. Let P be a temporal-sampling of size n. There exists an O(n3)-time algorithm
which is guaranteed to output a Labeled (χ, δ)-Clustering of P , for any χ, δ such that P
admits a Labeled (χ, δ)-Clustering.

Proof. Let t be the length of P . Run the algorithm of Section 2 on P . Since P admits
a Labeled (χ, δ)-Clustering, it also admits a Local (χ, δ)-Clustering where for any
1 ≤ i < t, the i-th correspondence is given by Ci = {(u, v) : (u, v) ∈ Pi × Pi+1, Li(u) ∩
Li+1(v) 6= ∅}. Thus, by Theorem 6, we are guaranteed a Local (χ, δ)-Clustering in
O(n2)-time. Let {Ci}t−1

i=1 be its δ-local correspondences, and run the above algorithm on it.
By Lemma 7, the flow instance F := F ({Ci}t−1

i=1) is feasible with value at most n. Using an
algorithm of Gabow & Tarjan [16], we can solve F in O(n3)-time, yielding an integral flow f .
Again in O(n3)-time, we decompose f into a collection of unit flows {τj}kj=1, for some k ≤ n,
which we interpret as paths from P1 to Pt.

We now verify that the sequence of label functions output by the algorithm is indeed a
δ-contiguous k-labeling for some k ≤ n. For any i ∈ [t], and any j ∈ [k] let τj(i) denote the
i-th vertex in the j-th path. Recall that for each i ∈ [t], we assign each point u ∈ Pi the set
of labels Li(u) = {j : j ∈ [k], u = τj(i)}. Note that each label in [k] is used at most once
per level since for any j, i ∈ [t], τj(i) is the only place where τj intersects Pi. Also, since
each τj intersects all levels i ∈ [t], each label is used at least once per level. It follows that
{Li(u) : u ∈ Pi} is a partition of [k]. Finally, since the edges of F correspond to points that

ISAAC 2017
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are separated by at most δ in the ambient space, any two uses of the label j ∈ [k] for some
i ∈ [t− 1] occur within d(τj(i), τj(i+ 1)) ≤ δ. Thus the corresponding sequence of k-labelings
is indeed pairwise δ-contiguous. J

4 Generalized Version

In this section we show that the generalized version problem is NP-hard. However, we argue
that for the special case where the points of the input share a (known) common ambient
metric, the algorithm of Section 2 gives an approximate solution. It remains an open question
as to how to find an approximate solution in polynomial-time when there is no ambient
metric (or it is unknown).

NP-hardness. Let G = (V,E) be an instance of 3-coloring. We construct an instance of
Generalized Temporal Hierarchical Clustering,M(G), consisting of two levels. For
the first level let P = {r, g, b} be a set of three points, and let dP be a metric on P such that
distinct p, p′ ∈ P have dP (p, p′) = 2. Denote the corresponding metric space MP := (P, dP ).
For the second level we construct a metric space MV := (V, dV ), where dV : V × V → R≥0,
such that

dV (u, v) =


2 if {u, v} ∈ E
1 if {u, v} 6∈ E and u 6= v,

0 otherwise.

I Lemma 9. If G admits a 3-coloring requiring 3 colors, thenM(G) admits a Generalized
(1, 0)-Clustering.

Proof. Fix a 3-coloring of G = (V,E). We will exhibit a pair of pseudometric spaces and
a 0-distortion correspondence between them. For the first space let UP = (P, µP ) be a
uniform metric space where distinct points are at a distance of 1. Note that L∞(MP , UP ) =
maxu,u′∈P |dP (u, u′)−µP (u, u′)| = 1, since for any distinct u, u′ ∈ P , |dP (u, u′)−µP (u, u′)| =
|2− 1| = 1.

We will use the points of P to denote the color class of v ∈ V . Fix c : V → P be such
that c(v) = c(v′) if and only if v, v′ share the same color class. Let UV = (V, µV ) be the
pseudometric space where for any v, v′ ∈ V , µV (v, v′) = 1 if and only if c(v) 6= c(v′), and
µV (v, v′) = 0 otherwise. We now bound L∞(MV , UV ) by considering |dV (v, v′)− µV (v, v′)|
for an arbitrary pair v, v′ ∈ V . Since µV (v, v) = dV (v, v) = 0 for any v ∈ V , only distinct
v, v′ can contribute to the distortion. Suppose {v, v′} ∈ E, then c(v) 6= c(v′) and thus
|dV (v, v′) − µV (v, v′)| = |2 − 1| = 1. Otherwise, {v, v′} 6∈ E, and dV (v, v′) = 1 while
µV (v, v′) ≤ 1 so that |dV (v, v′)− µV (v, v′)| ≤ 1. Thus L∞(MV , UV ) ≤ 1.

Last, let C = {(p, v) ∈ P × V : c(v) = p}. We now verify that C is a 0-distortion
correspondence. To see that C ∈ Corr(P, V ), note that πP (C) = P since G requires 3
colors, and πV (C) = V since every vertex v ∈ V belongs to a color class. Finally, to bound
dis(µP , µV ; C) note that for any (p, v), (p′, v′) ∈ C, either p = p′ and |µP (p, p′)− µV (v, v′)| =
|µV (v, v′)| = 0 (since c(v) = c(v′)), or p 6= p′ and |µP (p, p′)− µV (v, v′)| = |1− 1| = 0. J

I Lemma 10. If G does not admit a 3-coloring, thenM(G) does not admit a Generalized
(2, 0)-Clustering.

Proof. Let (V,E) = G. Fix a Generalized (χ, 0)-Clustering ofM(G) for some χ < 2
consisting of ultrametrics UP = (P, µP ), UV = (V, µV ), and a 0-distortion correspondence
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C ∈ Corr(P, V ). We first argue that the points of P are separated. Let p, p′ ∈ P , p 6= p′.
If µP (p, p′) = 0 then L∞(MP , UP ) ≥ |µP (p, p′) − dP (p, p′)| = |0 − 2| = 2. Thus χ ≥ 2, a
contradiction.

Now fix a map c : V → P , such that for any v ∈ V , c(v) = p such that (p, v) ∈ C.
First we argue that c is indeed a function by showing that for any v ∈ V , v corresponds
to exactly one point in P . To see why observe that given any (p, v), (p′, v) ∈ C with p 6= p′

it follows that 0 = dis(µP , µV ; C) ≥ |µP (p, p′) − µV (v, v)| = µP (p, p′) > 0. We now show
how to use c to construct a 3-coloring of G. Since χ < 2, for every {u, v} ∈ E, we have
µV (u, v) > 0, as otherwise χ ≥ L∞(MV , UV ) ≥ |dV (u, v) − µV (u, v)| = 2. Consider any
pair of corresponding points (c(u), u), (c(v), v) ∈ C. It must be the case that c(u) 6= c(v) as
otherwise dis(µP , µV ; C) ≥ |µP (c(u), c(v)) − µV (u, v)| = µV (u, v) > 0. Color the graph by
assigning each v ∈ V to a color class given by c(v). Since for adjacent u, v ∈ V , we have
µV (u, v) > 0, it follows that c(u) 6= c(v), and thus there is no edge between vertices of the
same color. We have exhibited a 3-coloring of G. J

Theorem 11 result follows directly from Lemma 9, and Lemma 10. The proof also implies
that for the Generalized Temporal Hierarchical Clustering problem, for some fixed
ρ, approximating χ within any factor smaller than 2 is NP -hard.

I Theorem 11. The Generalized Temporal Hierarchical Clustering problem is
NP -hard.

Approximation by local version. We now show that any Local (χ, δ)-Clustering is a
Generalized (χ, 2χ+ 2δ)-Clustering. That is, we can view the local version of the
problem as an approximation to the general version in the special case that the points of the
input come from the same metric space.

I Lemma 12. Let P be a temporal-sampling. Any Local (χ, δ)-Clustering of P is a
Generalized (χ, 2χ+ 2δ)-Clustering of P .

Proof. Suppose P has length t and ambient metric space M = (X, d). Fix a Local
(χ, δ)-Clustering of P with ultrametrics {Ui = (Pi, µi)}ti=1, and correspondences, {Ci}t−1

i=1,
induced by labelings of successive pairs of levels. Observe that maxi∈[t−1] dis(µi, µi+1, Ci) =
maxi∈[t−1] max(x,y),(x′,y′)∈Ci

|µi(x, x′) − µi+1(y, y′)|. Since χ ≥ maxi∈[t] L
∞(M [Pi], Ui), it

follows by definition of L∞ that χ ≥ |µi(x, x′)− d(x, x′)| for any i ∈ [t], x, x′ ∈ Pi. Fix an
arbitrary i ∈ [t−1] and let (x, y), (x′, y′) ∈ Ci. By triangle inequality |µi(x, x′)−µi+1(y, y′)| ≤
|d(x, x′) − d(y, y′)| + 2χ. Note that since (x, y), (x′, y′) ∈ Ci, we have d(x, y), d(x′, y′) ≤ δ.
Thus y, y′ ∈ X are contained in δ-balls of x, x′ in X (respectively). It follows that
|d(x, x′)− d(y, y′)| ≤ 2δ. We conclude that for any i ∈ [t− 1], (x, y), (x′, y′) ∈ Ci, |µi(x, x′)−
µi+1(y, y′)| ≤ 2χ+ 2δ, and thus maxi∈[t−1] dis(µi, µi+1; Ci) ≤ 2χ+ 2δ. J

5 Stability

In this section we show that the algorithm for finding an `∞-nearest ultrametric in [13] is
unstable under perturbations of the metric and, consequently, so are our algorithms. Stability,
naturally, is a desirable property; as otherwise if small changes in the input are allowed to
produce vastly different ultrametrics, then the observed temporal coherence of the output
is lost. Furthermore, this is the case even if the cost of fitting each level to an ultrametric
remains best possible. We resolve this issue in practice by instead finding the `∞-nearest
subdominant ultrametric.

ISAAC 2017
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u

v

eM

1 + ε u

v

eM ′

1 + ε

Figure 3 Two metric graphs M , M ′ which differ by an ε-perturbation. Solid edges have length 1
and appear in their respective MSTs. Dashed edges have length 1+ε. InM , p(e) = 6, and the priority
of any edge along the bottom of M is diam(M) = 9. Let U , U ′ denote the result from running the
algorithm in [13] onM , andM ′, respectively. In computing U fromM the edge e is cut after all of the
edges along the base, and thus u, v are assigned distance of 6− 1

2L
∞(M,µS(M)) = 6− 1

2 (9− 1) = 2.
Compare with M ′, where the priority p of any edge of the MST is p = p(e) = diam(M ′) = 9 + ε.
Thus u, v are assigned distance of 9 + ε − 1

2L
∞(M ′, µS(M ′)) = 5 + ε/2. By considering n point

metric spaces with bases of length n−2, this example generalizes to show L∞(U,U ′) = Ω(diam(M)).

Subdominant ultrametrics. Let M = (X, d) be a metric space. We will consider M to be
a complete graph where the edges are weighted by distance, and use the notation TM to
refer to a minimum spanning tree on M . Further, for any x, y ∈ M , let TM (x, y) denote
the unique path joining x, y ∈ M . Let U(M) denote the set of ultrametrics on the points
of M . Let U≤(M) = {(X,µ) ∈ U(M) : µ(x, y) ≤ d(x, y) for all x, y ∈ M}. In other
words, U≤(M) is the set of ultrametrics on the points of M such that no distance is made
larger than its counterpart in M . We say that an ultrametric in U≤(M) is subdominant
to M . Let µS(M) = (U, µ) be a metric space on the points of M with distance function
µ(x, y) = max{u,v}∈TM (x,y) M(u, v). The distance function µ is independent of the choice of
minimum spanning tree, and easily verified to be ultrametric and subdominant to M . It can
further be shown that µS(M) is the unique, `∞-closest subdominant ultrametric to M . That
is, µS(M) = arg minU∈U≤(M) L

∞(U,M).

Instability. We now show that the algorithms of Section 2, Section 3 are unstable. To
elucidate why we now restate the algorithm in [13] in a slightly modified form which helps to
make our point. This procedure is equivalent to the following:
Step 1: Compute a minimum spanning tree. Given a metric space M = (X, d)
consider a weighted complete graph on X where the the weight of any edge {x, x′} is
d(x, x′). Find a minimum spanning tree of this graph, TM .

Step 2: Compute cut-weights for each edge. Let (X,µ) = µS(M). For each edge e =
{u, v} ∈ TM , compute and assign a priority p(e) to e such that p(e) = maxx,x′∈X{d(x, x′) :
e ∈ TM (x, x′), µ(x, x′) = d(u, v)},

Step 3: Assign distances. Edges are cut in order of descending priority. Any pair
of vertices u, v ∈ TM first separated by a cut at e are assigned a distance of p(e) −
1
2L
∞(M,µS(M)).

When an edge is cut, points first separated by the removal of that edge are assigned a distance
which depends on its largest supported distance in M . The issue is that small perturbations
in the metric can change the path structure of TM so that an edge becomes responsible for
linking a far pair of points. The only hope for stability is that the other term in the assigned
distance, 1

2L
∞(M,µS(M)), changes enough to offset this effect. However, Lemma 13 shows

that this term is stable, and thus is not large enough to compensate. It follows that the
above procedure is unstable. See Figure 3 for a concrete example.

Ensuring stability. In contrast, the `∞-nearest subdominant ultrametric is stable under
metric perturbations. We now give a simple, direct proof of this fact for our setting. See [6]
for extended discussion.
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(a) (b) (c)

Figure 4 Three levels of a temporal hierarchical clustering. The contours show the coarse cluster
structure which results from cutting the ultrametric at various offsets. Points which appear together
within a contour share a cluster at that height in the ultrametric tree. (4a) Yellow and brown
clusters are close. (4b) One level later, yellow and brown clusters merge. Note that the coarse
structure remains stable. (4c) Ten levels later, a blue point (now pink) splits from its cluster.

I Lemma 13. Let M , M ′ be metric spaces on the same points such that L∞(M,M ′) ≤ ε,
then L∞(µS(M), µS(M ′)) ≤ ε.

Proof. Let P denote the points of M . Fix a distance weighted MST of M , TM , and let
(P, µ) = µS(M), (P, µ′) = µS(M ′). For any pair of points x, y ∈ P let P(x, y) denote
the set of all simple paths x  y in M (when M is viewed as a complete graph). Let
w : P(x, y) → R≥0 be the function that sends each path in P(x, y) to the value of its
maximum weight edge. Observe that the maximum weight edge along TM (x, y) is equal to
minγ∈P(x,y) w(γ), as otherwise it is possible to construct a spanning tree with cost strictly
less than that of TM . Thus, µ(x, y) = minγ∈P(x,y) w(γ). Now since M , M ′ differ by an
ε-perturbation, the values individual edges of the paths (and therefore the values of the paths
in P(x, y) under w) change by at most ε. Thus, |µ(x, y)− µ′(x, y)| ≤ ε J

Such a choice for ultrametric embedding is suboptimal, but the next lemma shows that it
is within a factor of 2 of optimal. This fact essentially follows from arguments in [13].

I Lemma 14 ([13]). Let M be a finite metric space and U ∈ U(M), then L∞(µS(M),M) ≤
2L∞(U,M).

As one might expect, using the 2-approximate algorithm µS for A in the algorithm
of Section 2 results in a Local (2χ, δ)-Clustering whenever the input admits a Local
(χ, δ)-Clustering. Lemma 12 then implies that the result is a Generalized (2χ, 4χ+ 2δ)-
Clustering. However, since the error incurred by µS is one-sided, there is no additional
loss in the coupling distortion and the result is a Generalized (2χ, 2χ+ 2δ)-Clustering.

6 Example Output and Conclusion

In Figure 4, we present output based on synthetic data. For expository purposes we seek a
data source for which many levels can reasonably be described as hierarchical, yet changes
enough that the hierarchy evolves over time. We obtain such input by regularly saving
snapshots of actor positions from a flocking simulation. A labeled clustering is obtained
using the algorithm of Section 3 and fitting by subdominant ultrametrics.

We conclude by briefly mentioning some open questions. In Section 4 we show that
the general problem is NP-hard, though our proof uses an unnatural metric space. It is

ISAAC 2017



28:12 Temporal Hierarchical Clustering

unknown if the general version admits an exact algorithm on “nice” metric spaces. Further,
it may still be possible to obtain optimal algorithms for the local and labeled versions of the
problem which are stable under perturbations. Last, while we believe that our adaptations of
hierarchical clustering are quite natural, one could consider alternative models where, say, the
distortion is replaced with a tree dissimilarity measure (e.g. nearest neighbor interchange).
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