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Abstract
We study the problem of clustering sequences of unlabeled point sets taken from a common metric
space. Such scenarios arise naturally in applications where a system or process is observed in
distinct time intervals, such as biological surveys and contagious disease surveillance. In this more
general setting existing algorithms for classical (i.e. static) clustering problems are not applicable
anymore.

We propose a set of optimization problems which we collectively refer to as temporal clus-
tering. The quality of a solution to a temporal clustering instance can be quantified using three
parameters: the number of clusters k, the spatial clustering cost r, and the maximum cluster dis-
placement δ between consecutive time steps. We consider spatial clustering costs which generalize
the well-studied k-center, discrete k-median, and discrete k-means objectives of classical cluster-
ing problems. We develop new algorithms that achieve trade-offs between the three objectives k,
r, and δ. Our upper bounds are complemented by inapproximability results.
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1 Introduction

Clustering points in a metric space is a fundamental problem that can be used to express
a plethora of tasks in machine learning, statistics, and engineering, and has been studied
extensively both in theory and in practice [4, 8, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31]. Typically,
the input consists of a set P of points in some metric space and the goal is to compute
a partition of P minimizing a certain objective, such as the number of clusters given a
constraint on their diameters.

We study the problem of clustering sequences of unlabeled point sets taken from a
common metric space. Our goal is to cluster the points in each ‘snapshot’ so that the cluster
assignments remain coherent across successive snapshots (across time). We formulate the
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34:2 Temporal Clustering

problem in terms of tracking the centers of the clusters that may merge and split over time
while satisfying certain constraints. Such instances are common in the study of time-evolving
processes and phenomena under discrete observation. As an example consider a hypothetical
study which aims to track the spread of a certain genetic mutation in plants. Here, data
collection efforts center on annual field surveys in which a technician collects and catalogs
samples. The location and number of mutation positive specimens change from year to
year. Clustering such spaces is clearly a generalization of classical (static) clustering, which
we refer to as temporal clustering. In this dynamic variant of the problem, apart from the
number of clusters and their radii, we also wish to minimize the extent by which each cluster
moves between consecutive snapshots.

Related work. Clustering of moving point sets has been studied in the context of kinetic
clustering [2, 6, 17, 18, 16, 14, 1]. In that setting points have identities (labels) which are
fixed throughout their motion, the trajectories of the points are known beforehand, and the
goal is to design a data structure which can efficiently compute a near-optimal clustering for
any given time step. In our setting, since the points are not labeled there is, a priori, no
explicit motion. Instead we are given a sequence of unlabeled points in a metric space and
are required to assign the points of each to a limited number of temporally coherent clusters.
Motion emerges as a consequence of cluster assignment. Consequently, kinetic clustering
algorithms cannot be used in our setting. Another related problem concerns clustering time
series under the Fréchet distance [11], with the clusters being constrained to move along
polygonal trajectories of bounded complexity. This constraint is used to avoid overfitting, and
is conceptually similar to our requirement that the clusters remain close between snapshots.

1.1 Problem formulations
Let us now formally define the algorithmic problems that we study in this paper. Perhaps
surprisingly, very little is known for temporal clustering problems. There are of course
different optimization problems that one could define; here we propose what we believe are
the most natural ones.

We first define how the input to a temporal clustering problem is described. LetM = (X, d)
be a metric space. Let P (1), . . . , P (t) be a sequence of t finite, non-empty metric subspaces
(points) of M . We refer to individual elements of this sequence (the ‘snapshots’) as levels,
and collectively to P as a temporal-sampling of M of length t. The size of P is the total
number of points over all levels, that is

∑
i∈[t] |P (i)|. Let {τ(i)}ti=1 be a sequence of points

such that τ(i) ∈ P (i) is a single point. We say that τ is a trajectory of P , and we let T (P )
denote the set of all possible trajectories of P . For some C ⊆ T (P ), we denote by C(i) the
set of points of the trajectories in C which lie in P (i). In other words, C(i) =

⋃
τ∈C τ(i). The

set of trajectories C induces a clustering on each level P (i) by assigning each p ∈ P (i) to the
trajectory τ ∈ C that minimizes d(p, τ(i)). We refer to the points of C(i) as the centers of
level i. Intuitively, this formulation allows points in different levels of P which are assigned
to the same trajectory to be part of the same cluster; see Figure 1. Further, observe that
trajectories may overlap allowing clusters to merge and split implicitly; see Figure 3a. We
refer to C as a temporal-clustering of P .

We now formalize the clustering objectives. Our approach is to treat temporal clustering
as a multi-objective optimization problem where we try to find a collection of trajectories
such that their induced clustering ensures three conditions:
(i) points in the same cluster remain near between successive levels (locality),
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(a) P

δ(C)

rad∞(C)

(b) A temporal 3-clustering

δ(C)

rad∞(C)

(c) A temporal 2-clustering

Figure 1 (1a) A temporal-sampling P of length 4 where P (i) ⊂ R is drawn horizontally. Each
level of P is depicted as a row starting from P (1) at the top. (1b) The temporal-sampling P shown
with a clustering C, consisting of 3 clusters. The centers of each of 3 trajectories are depicted as
filled circles in each level. Arrows are drawn between τj(i) and τj(i + 1) for each trajectory τj ,
j ∈ {1, 2, 3}. In the first level, a pair of points which achieve the spatial cost are joined to their
respective cluster centers by a dashed edge. The arrow between the pair of centers which achieves
maximum displacement is shown in bold. (1c) The temporal-sampling P shown with 2 clusters.

(ii) the restriction of the clustering to any single level fits the shape of the data (spatial
constraint), and

(iii) we do not return excessively many clusters (complexity).
To measure how far some trajectory τ jumps, we define its displacement, denoted by
δ(τ), to be δ(τ) = maxi∈[t−1] d(τ(i), τ(i + 1)). We also define the displacement of C to be
δ(C) = maxτ∈C δ(τ). Finally, we consider three different objectives for the spatial cost, which
correspond to generalization of the k-center, k-median, and k-means respectively. The first
one, corresponding to k-center, is the maximum over all levels of the maximum cluster radius;
formally rad∞(C) = maxi∈[t] maxp∈P (i) d(p, C(i)), where d(p, C(i)) = minτ∈C d(p, τ(i)). The
second and third spatial cost objectives, which corresponding to discrete k-median, and
discrete k-means (respectively), are defined to be rad1(C) = maxi∈[t]

∑
p∈P (i) d(p, C(i)), and

rad2(C) = maxi∈[t]
∑
p∈P (i) d(p, C(i))2.

I Definition 1. Let r ∈ R≥0, δ ∈ R≥0. We say that a set of trajectories C ⊆ T (P ) is a
temporal (k,r,δ)-clustering of P if rad∞(C) ≤ r, δ(C) ≤ δ, and |C| ≤ k. (See Figure 1 for an
example.) We further define temporal (k, r, δ)-median-clustering and (k, r, δ)-means-clustering
analogously by replacing rad∞ by rad1 and rad2 respectively.

We now formally define the optimization problems that we study. In the case of static
clustering, a natural objective is to minimize the maximum cluster radius, subject to the
constraint that only k clusters are used; this is the classical k-Center problem [23]. Another
natural objective in the static case is to minimize the number of clusters subject to the
constraint that the radius of each cluster is at most r, for some given r > 0; this is the
r-Dominating Set problem [22]. Our definition of temporal clustering includes the temporal
analogues of k-Center and r-Dominating Set as special cases.

I Definition 2 (Temporal (k,r,δ)-Clustering problem). An instance of the Temporal
(k,r,δ)-Clustering problem is a tuple (M,P, k, r, δ), where M is a metric space, P is a
temporal-sampling of M , k ∈ N, r ∈ R≥0, and δ ∈ R≥0. The goal is to decide whether P
admits a temporal (k,r,δ)-clustering.

I Definition 3 (Temporal (k,r,δ)-Clustering approximation). Given an instance of the
Temporal (k,r,δ)-Clustering problem consisting of a tuple (M,P, k, r, δ), a (α,β,γ)-
approximation is an algorithm which either returns a temporal (αk,βr,γδ)-clustering of P , or
correctly decides that no temporal (k,r,δ)-clustering exists. In general α, β, and γ can be
functions of the input.

ESA 2017
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We analogously define the Temporal (k,r,δ)-Median Clustering problem and ap-
proximation, and the Temporal (k,r,δ)-Means Clustering problem and approximation
by replacing in Definitions 2 and 3 (·, ·, ·)-clustering by (·, ·, ·)-median-clustering and (·, ·, ·)-
means-clustering respectively.

1.2 Our contribution
To the best of our knowledge, this is the first study of the above models of temporal clustering.
Our main contributions consist of polynomial-time approximation algorithms for several
temporal clustering variants, and hardness of approximation results for others.

Temporal clustering. We begin by discussing our results on Temporal (k,r,δ)-Cluster-
ing. We first consider the problem of minimizing r and δ while keeping k fixed. This is a
generalization of the static k-Center problem. We present a polynomial-time (1, 2, 1 + 2ε)-
approximation algorithm where ε = r/δ using a different method. More specifically, our result
is obtained via a reduction to a network flow problem. We show that the problem is NP-hard
to approximate to within polynomial factors even if we increase the radius by a polynomial
factor. Formally, we show that it is NP-hard to obtain a (1, poly(n), poly(n))-approximation.

Next we consider the problem of minimizing the number of clusters k, while fixing r
and δ. This is a generalization of the static r-Dominating Set problem. We obtain a
polynomial-time (lnn, 1, 1)-approximation algorithm. For the static case, the polynomial-
time (lnn)-approximation algorithm follows by a reduction to the Set-Cover problem, and
is known to be best-possible [10, 30, 12]. However, in the temporal case, this reduction
produces an instance of Set-Cover of exponential size. Thus, it does not directly imply
a polynomial-time algorithm for Temporal r-Dominating Set. We bypass this obstacle
by showing how to run the greedy algorithm for Set-Cover on this exponentially large
instance in polynomial-time, without explicitly computing the Set-Cover instance. We also
argue that (lnn, 1, 1)-approximation is best possible by observing that ((1− ε) lnn, 2− ε′, ·)-
approximation is NP-hard for any ε, ε′ > 0.

We further present a result that can be thought of as a trade-off between the above
two settings by allowing both the number of clusters and the radius to increase. More
precisely, we obtain a polynomial-time (2, 2, 1 + ε)-approximation algorithm where ε = r/δ.
Interestingly, we can show that obtaining a (1.005, 2− ε, poly(n))-approximation is NP-hard.

The following summarizes the above approximation algorithms.

I Theorem 4. Temporal (k,r,δ)-Clustering admits the following algorithms:
1. (1,2,1 + 2ε)-approximation where ε = r/δ,
2. (ln(n),1,1)-approximation,
3. (2,2,1 + ε)-approximation where ε = r/δ,
where n is the size of the temporal-sampling. Moreover, the running time of all of these
algorithms is O(n3).

We prove Theorems 1, 2, 3 in Sections 2.1, 2.2, 2.3, respectively.
It is important that the approximation in displacements for Theorem 1 and Theorem 3

takes into account the factor ε = r/δ if a polynomial time algorithm is aimed for. This
is because our inapproximability results as summarized below show that the problem is
NP-hard otherwise.

I Theorem 5. The status of Temporal (k,r,δ)-Clustering with temporal-samplings of
size n is as follows:
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1. There exist universal constants c > 0, c′ > 0 such that (1,cns(1−ε),c′n(1−s)(1−ε))-
approximation is NP-hard for any ε, s ∈ R where ε > 0 and s ∈ [0, 1].

2. ((1− ε) ln(n),2− ε′,·)-approximation is NP-hard for any fixed ε > 0, ε′ > 0.
3. There exists a universal constant c such that (1.00579,2− ε′,cn1−ε)-approximation is

NP-hard for any fixed ε > 0, ε′ > 0.
Moreover, items 1 and 3 remain NP-hard even for temporal-samplings in 2-dimensional

Euclidean space.

Due to space constraints, we defer extended discussion of Theorem 1, Theorem 2, and
Theorem 3 to the full version of the paper [9].

Temporal median clustering. We next discuss our result on the Temporal (k,r,δ)-
Median Clustering problem. The static k-Median problem admits an O(1)-approx-
imation via local search [5, 28]. In Section 2.4 we show that the local search approach fails
in the temporal case, even on temporal samplings of length two. We present an algorithm
that achieves a trade-off between the number of clusters and the spatial cost. The result
is obtained via a greedy algorithm, which is similar to the one used for the k-Set Cover
problem. The result is summarized in the following theorem.

I Theorem 6. For any fixed ε > 0, there exists an (O(log(n∆/ε)), 1 + ε, 1)-median-
approximation algorithm with running time poly(n, log(∆/ε)), on an instance of size n and a
metric space of spread ∆.

The result is obtained by iteratively selecting a trajectory which minimizes a certain
potential function. The proof uses submodularity and monotonicity of the potential function.
These properties remain true if the potential function is modified by replacing d(p, C(i)) with
d(p, C(i))2, and thus an identical theorem holds for Temporal k-Means.

We complement the above algorithm by showing the following hardness result.

I Theorem 7. The status of Temporal (k,r,δ)-Median Clustering with temporal-
samplings of size n is as follows:
1. There exist universal constants cr, cδ such that (1,crns(1−ε),cδn(1−s)(1−ε))-approximation

for Temporal k-Median is NP-hard for any ε, s ∈ R where ε > 0 and s ∈ [0, 1].
2. Let c, s be the constants from Theorem 4.6 (3) in [7]. Let 0 ≤ f < c − s. Then

( 3−(s+f)
3−c , 1+crf, cδn1−ε)-approximation is NP-hard for any fixed ε > 0 and some constants

cr, cδ.
Moreover, item 1 remains hard even for temporal-samplings from 2-dimensional Euclidean
space.

The clustering instances used in the proofs of Theorem 1 and Theorem 2 involve clusterings
which use only a constant number of points per cluster, thus the same constructions suffice
to prove hardness of Temporal (k,r,δ)-Means Clustering with only slight modification
of the distances. See the discussion in the full version [9].

Additional notation and preliminaries. Let r > 0. An r-net in some metric space (X, d) is
some maximal Y ⊆ X, such that for any x, y ∈ Y , with x 6= y, we have d(x, y) > r. Let P be
a temporal-sampling of length t in some metric space (X, d). Let V (P, i) =

⋃
x∈P (i){(i, x)}

for all i ∈ [t]. For any trajectory τ , and for any r ≥ 0, the tube around τ of radius r, denoted
by tube(τ, r), is defined to be tube(τ, r) =

⋃
i∈[t]{(i, x) ∈ V (P, i) | x ∈ ball(τ(i), r)}, where

for x ∈ X, r ∈ R≥0, we use the notation ball(x, r) to denote a closed ball of radius r. Let
δ ∈ R≥0. The directed graph Gδ(P ) has as vertices V (P, i) for all i ∈ [t]. For any i ∈ [t− 1]
there is an edge between p ∈ V (P, i) and q ∈ V (P, i+ 1) whenever d(p, q) ≤ δ (see Figure 2).

ESA 2017
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Figure 2 The graph Gδ(P ) for P from the previous diagram and some δ. Points which are within
a distance of δ in adjacent levels are connected by a directed edge which points toward the higher
indexed level.

2 Algorithms

2.1 Exact number of clusters: (1,2,1 + 2ε)-approximation
In this section, we consider the problem of computing a temporal clustering by relaxing
the radius and the displacement, while keeping the number of clusters exact. This is
a temporal analogue of the k-Center problem. We first present a polynomial time
(1,2,1 + 2ε)-approximation where ε = r/δ. In the full version [9], we complement this with
an inapproximability result.

An auxiliary network flow problem. The high-level idea of the polynomial time algorithm
is to use a reduction to a specific network flow problem. Specifically, we seek a minimum flow
which satisfies lower bound constraints along certain edges. This is the so-called minimum
flow, or minimum feasible flow problem [3, 15]. We now formally define this flow network.
For each i ∈ [t], let C(i) ⊆ P (i). Let γ > 0. We construct a flow network, denoted by
Nγ(P,C) where C is the sequence of centers C(i) for i ∈ [t]. We start with the graph Gγ(P ).
In level i, we replace each vertex v = (i, c) for c ∈ C(i) by a pair of vertices tail(v) and
head(v), and we connect them by an edge (tail(v), head(v)). For vertices v = (i, p) where
p ∈ P (i) \ C(i) we define tail(v) = head(v) = v. Now for any vertex v, all incoming edges to
v become incoming edges to tail(v), and all outgoing edges from v become outgoing edges
from head(v). We add a source vertex s and a sink vertex s′. For all p ∈ P (1), we add an
edge from s to tail((1, p)). Similarly, for all p ∈ P (t), we add an edges from head((t, p)) to s′.
We set the capacity of each edge to be ∞. Finally, we set a lower bound of 1 to the capacity
of every edge (tail(v), head(v)), for all v = (i, c), c ∈ C(i), i ∈ [t] (see Figure 3b).

Algorithm. We first compute a net at every level of the temporal-sampling and then we
reduce the problem of computing a temporal clustering to a flow instance, using the network
flow defined above. By computing an integral flow and decomposing it into paths, we obtain
a collection of trajectories. The lower bound constraints ensure that all net points are
covered; this allows us to show that all points are covered by the tubular neighborhoods of
the trajectories. Formally, the algorithm consists of the following steps:
Step 1: Computing nets. For each i ∈ [t], compute a 2r-net C(i) of P (i). If for some i ∈ [t],
|C(i)| > k, then return nil.

Step 2: Constructing a flow instance. We construct the minimum flow instance
N2r+δ(P,C).

Step 3: Computing a collection of trajectories. If the flow instance N2r+δ(P,C) is not
feasible, then return nil. Otherwise, find a minimum integral flow F in N2r+δ(P,C),
satisfying all the lower bound constraints. Decompose F into a collection of paths, each
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(a) The graph Gγ(P ). (b) The flow network Nγ(P,C).

Figure 3 (3a) The graph Gγ(P ) for P (i) ⊂ R and some γ > 0. The vertices in C(i), i ∈ [4], are
indicated with filled circles. (3b) The flow network Nγ(P,C) corresponding to Gγ(P ). Every node
from C has been split into an edge.

carrying a unit of flow. The restriction of each path in G is a trajectory. Output the set
of all these trajectories.

Throughout the rest of this section let P be a temporal-sampling. We now show that
if there exists a temporal (k,r,δ)-clustering, then the above algorithm outputs a temporal
(k, 2r, (1 + 2ε)δ)-clustering where ε = r/δ.

I Lemma 8. Suppose that P admits a temporal (k,r,δ)-clustering, Q. For each i ∈ [t]
let Q(i) denote the level i centers of Q, and let C(i) be a 2r-net of P (i). Then the map
πi : C(i)→ Q(i) which sends each 2r-net center to a nearest center in Q(i) is injective.

Proof. First, observe that for each c ∈ C(i), d(c, πi(c)) ≤ r because r-balls centered at the
points in Q(i) cover P (i) and hence C(i). For injectivity of πi, observe that, πi(c) 6= πi(c′)
for c 6= c′ because otherwise the inequality d(c, c′) ≤ d(c, πi(c)) + d(c′, πi(c′)) ≤ 2r holds
violating the property that C(i) is a 2r-net. J

Since for each i ∈ [t], the map πi is injective, it follows that |C(i)| ≤ |Q(i)| ≤ k. So, we
have the following immediate Corollary.

I Corollary 9. If P admits a temporal (k,r,δ)-clustering then for any i ∈ [t], any 2r-net C(i)
of P (i) has |C(i)| ≤ k.

I Lemma 10. If P admits a temporal (k,r,δ)-clustering then for any level-wise 2r-net C,
the flow instance N2r+δ(P,C) admits a feasible flow of value k.

Proof. Fix a temporal (k,r,δ)-clustering Q and let τ denote one of its k trajectories. The
graph G2r+δ(P ) contains a path corresponding to τ as the distance between any pair of
consecutive points in P is at most δ. For each i, let πi : C(i)→ Q(i) denote a map which
sends each 2r-center of C(i) to a nearest center in Q(i). We modify τ to produce some path
τ ′ in G2r+δ(P ) as follows: for every level i such that τ(i) = πi(ci) for some net-point ci ∈ C(i)
we let τ ′(i) = ci, otherwise we set τ ′(i) = τ(i). We observe that in the worst case the distance
between consecutive points, say u = τ ′(i) and v = τ ′(i+ 1), is at most 2r + δ because of the
following inequality (see Figure 4) d(u, v) ≤ d(u, τ(i)) + d(τ(i), τ(i+ 1)) + d(τ(i+ 1), v) ≤
r + δ + r. It follows that τ ′ is indeed a path in G2r+δ(P ). Further, by the injectivity of each
map πi (Lemma 8) which is used in deforming τ to τ ′, we have that for every net point,
there exists some τ ′ that contains it. In other words, all net points C(i) are covered by the
paths τ ′. For each optimal trajectory τ , let τ ′′ be the path in N2r+δ(P,C) obtained from τ ′

ESA 2017



34:8 Temporal Clustering

≤ δ

≤ 2r + δ

P (i)

P (i+ 1)

Figure 4 The crosses, filled circles, and empty circles are optimal centers, net points, and other
points respectively. The paths (τ) in optimal solution and the deformed paths(τ ′) are indicated with
solid and dotted edges respectively.

by connecting s to the first vertex in τ ′, and the last vertex in τ ′ to t. By routing a unit of
flow in N2r+δ(P,C) along each such τ ′′ we obtain a flow of value at most k that meets all
the demands along the edges corresponding to net points C, concluding the proof. J

I Lemma 11. Given k, r, δ, and a temporal-sampling P , with |P | = n, there exists an O(n3)-
time algorithm that either correctly decides P does not admit a temporal (k,r,δ)-clustering,
or outputs some temporal (k,2r,2r + δ)-clustering.

Proof. Lemmas 9 and 10 imply that if a temporal (k,r,δ)-clustering exists, then the algorithm
does not return nil, and thus outputs a set T of at most k trajectories. Let C be the temporal
clustering corresponding to T . Each trajectory in T corresponds to a path in G2r+δ(P ), thus
has displacement at most 2r+δ. Therefore δ(C) ≤ 2r+δ. Since F is a feasible flow, it follows
that all lower bound constraints in N2r+δ(P,C) are satisfied. Thus for all i ∈ [t], for all
c ∈ C(i), there exists at least one unit of flow along the edge (tail(v), head(v)) corresponding
to the vertex v = (i, c); it follows that there exists some trajectory containing c in level i.
Since for all i ∈ [t], C(i) is a 2r-net of P (i), it follows that P (i) ⊆

⋃
c∈C(i) ball(c, 2r). Thus⋃

i∈[t] V (P, i) ⊆
⋃
τ∈T tube(τ, 2r), which implies that rad∞(C) ≤ 2r. We thus obtain that C

is a temporal (k,2r,2r + δ)-clustering. Finally, we bound the running time. Computing the
2r-nets over all levels, checking their sizes can be done in O(nk) time. Building G2r+δ(P )
and N2r+δ(P,C) can be done in O(n2) time. Finding an integral solution to N2r+δ(P,C)
takes O(n3) time using the algorithm of Gabow and Tarjan [15]. Decomposing the resulting
flow takes O(n3) time. We conclude that the entire procedure completes in O(n3) time. J

Writing ε = r/δ, we immediately obtain Theorem 1 from Lemma 11.

2.2 Exact radius and displacement: (ln(n),1,1)-approximation
In this section we consider the case where the number of clusters is allowed to be approximated
in analogy to the static r-Dominating Set problem. We present a polynomial-time (ln(n),1,1)-
approximation algorithm. In the full version [9], we argue that this result is tight in the
sense that obtaining a ((1− ε) ln(n),1,1)-approximation is NP-hard for any fixed ε > 0.

Let P be a temporal-sampling of length t. For any δ ≥ 0, we denote by Tδ(P ) the
set of all trajectories of displacement at most δ. Given an instance of the Temporal
(k,r,δ)-Clustering problem consisting of a tuple (M,P, k, r, δ), the high level idea is to
express the problem as an instance of Set-Cover. Recall that an instance of Set-Cover
consists of a pair (U,S), where U is a set, and S is a collection of subsets of U . The goal
is to find some S ′ ⊆ S, minimizing |S ′|, such that U ⊆

⋃
X∈S′ X, if such S ′ exists. We

set U =
⋃
i∈[t] V (P, i), and S =

⋃
τ∈Tδ(P ){tube(τ, r)}. We will show that a solution to the

Set-Cover instance (U,S) can be used to obtain a temporal (ln(n)k,r,δ)-clustering. Note
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that S can have cardinality exponential in the size of the input. However, as we shall see, we
can still obtain an approximate solution for (U,S) in polynomial-time.

We first establish that any α(n)-approximate solution to (U,S) can be converted, in
polynomial-time, to a temporal (α(n)k,r,δ)-clustering. Let sOPT denote the minimum
cardinality of any feasible solution for (U,S) when it exists. Similarly, let kOPT denote the
smallest value of k′ such that P admits a temporal (k′,r,δ)-clustering.

I Lemma 12. kOPT = sOPT.

The proof of Lemma 12 is deferred to the full version [9]. We next establish the following
result which allows us to run the greedy algorithm for Set-Cover on the instance (U,S) in
polynomial-time, even though |S| can be exponentially large.

I Lemma 13. Let S ′ ( S. There exists an O(n2) time algorithm which computes some
X ∈ S \ S ′, maximizing

∣∣X ∩ (U \⋃Y ∈S′ Y
)∣∣. Moreover, the algorithm outputs some

trajectory τ ∈ Tδ(P ), such that X = {tube(τ, r)}.

The proof of Lemma 13 is deferred to the full version [9]. We are now ready to prove
Theorem 2.

Proof of Theorem 2. Recall that the classical greedy algorithm for Set-Cover computes
a solution S ′ ⊆ S, if one exists, as follows: Initially, we set S ′ = ∅. At every iteration, we
pick some X ∈ S \S ′ such that

∣∣X ∩ (U \⋃Y ∈S′ Y
)∣∣ is maximized, and we add X to S. The

algorithm stops when either U is covered by S, or when no further progress can be made,
i.e. when

∣∣X ∩ (U \⋃Y ∈S′ Y
)∣∣ = 0; in the latter case, the instance (U,S) is infeasible. It

is well-known that this algorithm achieves an approximation ratio of lnn for Set-Cover
[25]. Now if (U,S) is infeasible the above procedure detects this and terminates. Otherwise,
let S ′ ⊆ S be the feasible solution found by repeatedly using the procedure described in
Lemma 13. The corresponding trajectories returned by this procedure form a temporal
(k′,r,δ)-clustering of P , for some k′ = |S ′| ≤ lnn · sOPT. By Lemma 12 it follows that
k′ ≤ lnn · kOPT ≤ lnn · k. Thus we obtain an (ln(n),1,1)-approximation. Finally, to bound
the running time note that in the worst case, the total number of calls to the procedure
in Lemma 13 is n since at every step we cover at least uncovered point. The theorem now
follows by the fact that each call takes O(n2) time. J

2.3 Approximating all parameters: (2,2,1 + ε)-approximation
So far we have constrained either the number of clusters or the radius and the displacement
to be exact. We now describe an algorithm that relaxes all three parameters simultaneously.
We present a polynomial-time (2, 2, 1 + ε)-approximation algorithm where ε = r/δ. We
complement this solution in the full version [9] by showing that it is NP-hard to obtain a
(1.005, 2− ε, poly(n))-approximation for any ε > 0.

I Lemma 14. If P admits a temporal (k,r,δ)-clustering then for any level-wise 2r-net C,
the flow instance Nr+δ(P,C) admits a feasible flow of value 2k.

Proof. Fix a temporal (k,r,δ)-clustering C = {τi}ki=1. We inductively define a sequence
Q0, . . . ,Qt, where for each i ∈ {0, . . . , t}, Qi is a multiset of paths in Gr+δ(P ). We set
Q0 = {σ1

1 , σ
2
1 , . . . , σ

1
k, σ

2
k}, where for each j ∈ [k], we have σ1

j = σ2
j = τj . Next, we inductively

define Qi, for some i ∈ {1, . . . , t}. Starting with Qi = Qi−1, we proceed to modify Qi. By
induction, it follows that the paths σ1

j , σ2
j , and τj share the same suffix at levels i, . . . , t. Thus,

τj(i) ∈ σ1
j and τj(i) ∈ σ2

j . Now, for the modification, we consider each c ∈ C(i), and proceed
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(a) (b) (c)

Figure 5 An example of the inductive construction of the multisets of paths Qi, for i = 0 (Figure
5a), i = 1 (Figure 5b), and i = 2 (Figure 5c). Dotted lines show where a trajectory has been rounded
to a net point. Thin and thick solid lines indicate where one or two trajectories are coincident to an
optimal trajectory, respectively. Initially (Figure 5a), Q0 consists of 2k trajectories σ1

j = σ2
j = τj ,

for the trajectories of some optimal solution τ1, . . . , τk. At step i, for any j ∈ [k] such that τj(i) is
within a distance of r from some net point, c, we obtain Qi by replacing τj(i) with c in either σ1

j or
σ2
j , depending on the parity of i.

as follows (see Figure 5 for an illustration). Since C is a valid temporal (k,r,δ)-clustering, it
follows from Lemma 8 that there exists an injective map πi from C(i) to the set τ1(i), . . . , τk(i)
so that πi(c) = τj(i) for some j ∈ [k] and d(τj(i), c) ≤ r. We consider the following two cases:
Case 1: If i is odd and τj(i) = πi(c) for some c ∈ C(i), then we modify σ1

j by replacing the
vertex τj(i) with c.

Case 2: If i is even and τj(i) = πi(c) for some c ∈ C(i), then we modify σ2
j by replacing the

vertex τj(i) with c.
We next argue that the result is indeed a path in Gr+δ(P ). Suppose that in the above step,
we modify the path σ`j , for some ` ∈ {1, 2} so that σ`j(i) = c. It follows by induction on i
that the path σ`j was not modified when constructing Qi−1; thus σ`j(i− 1) = τj(i− 1). Since
δ(τj) ≤ r, it follows by the triangle inequality that d(σ`j(i − 1), σ`j(i)) = d(τj(i − 1), c) ≤
d(τj(i− 1), τj(i)) + d(τj(i), c) ≤ δ + r. It follows that δ(σ`j) ≤ r + δ, which implies that each
element of Qi is indeed a path in Gr+δ(P ). This completes the inductive definition of the
multisets Q0, . . . ,Qt. It is immediate by induction that for each i ∈ [t], for each c ∈ C(i),
there exist some path σ ∈ Qt that visits c. We next transform the collection Qt into a
flow F in Nr+δ(P,C). For each path σ ∈ Qt, we obtain a path in the network Nr+δ(P,C)
starting from the source s, then replacing for each i ∈ [t], each c ∈ C(i) ∩ σ by the edge
(tail(v), head(v)), for v = (i, c), then terminating at the sink s′; we route a unit of flow along
the resulting path. Since for each i ∈ [t], there exists some path in Qt visiting each c ∈ C(i),
it follows that all lower-bound constraints in Nr+δ(P,C) are satisfied by F . Since Qt contains
2k paths, it follows that the value of the resulting flow is 2k, as required. J

We are now ready to prove Theorem 3.

Proof of Theorem 3. For each i ∈ [t], compute a 2r-net C(i) of P (i), and construct the flow
network Nr+δ(P,C). Compute a minimum flow F in Nr+δ(P,C) satisfying all lower-bound
constraints. If Nr+δ(P,C) is infeasible (i.e. if there is no flow satisfying all lower bound
constraints), or if the the value of the minimum flow in Nr+δ(P,C) is greater than 2k, it
follows by Lemma 14 that P does not admit a temporal (k,r,δ)-clustering. Thus, in this case
the algorithm terminates. Otherwise, we compute a minimum flow in Nr+δ(P,C). Since all
capacities and lower-bound constraints in Nr+δ(P,C) are integers, it follows that F can be
taken to be integral. We decompose F into a collection of at most 2k paths, each carrying
a unit of flow. Arguing as in Lemma 11 we have that the restriction of these paths on
Gr+δ(P ) is a set of trajectories that induces a valid temporal (2k,2r,r + δ)-clustering of P .



T.K. Dey, A. Rossi, and A. Sidiropoulos 34:11

P (1)

P (2)

(a) The clustering C∗.

P (1)

P (2)
D

(b) The clustering C.

Figure 6 An example demonstrating that local search fails. Consider a temporal-sampling P of
length 2 where P (1) = P (2) consists of a sequence of 5 points where successive points are separated
by D. (6a) A temporal (5, r, δ)-median-clustering, C∗, for any r, δ ∈ R≥0 with rad1(C∗) = 0. (6b) A
temporal (5, D, δ)-median-clustering, C, for any D ≤ δ < 2D. Note that swapping any trajectory in
C with one in Tδ(P ) is non-improving. The clustering C is therefore a local minimum of local search,
yet the ratio rad1(C)/rad1(C∗) remains unbounded.

This provides a (2,2,1 + ε)-approximation where ε = r/δ. Finally, the running time is easily
seen as O(n3) by the same argument that appears in Lemma 11, concluding the proof. J

2.4 Approximation algorithm for temporal median clustering
In this section we consider variants of Temporal Clustering which evaluate the spatial
cost of clustering by taking the level-wise maximum of discrete k-median and discrete k-means
objectives. A natural question is whether or not the problem admits a O(1)-approximation
via local search, as in static case [5, 28]. In Figure 6 we show that the local search approach
fails, even on temporal samplings of length two. Instead, the result is obtained by iteratively
selecting a trajectory which most improves a certain potential function. The result in this
section is presented for the Temporal (k,r,δ)-Median Clustering problem, and follows
by submodularity and monotonicity of the potential function. These properties remain if
d(p, C(i)) is replaced with the d(p, C(i))2, and thus holds identically for Temporal k-Means.

We now present an approximation algorithm for the Temporal (k,r,δ)-Median Clus-
tering problem. Let I = (M,P, k, r, δ) be an input to the problem, where P is a temporal-
sampling of length t. Let n denote the size of the P . Let also ∆ denote the spread of
M = (X, d). That is, ∆ = diam(M)

infp,q∈X{d(p,q):d(p,q)>0} . Since we only consider finite metric
spaces, and since the single point case is trivial, w.l.o.g. we may assume that the diameter
of M is ∆ and minimum interpoint distance in M is 1. For a set of trajectories C we
define cost(i; C) =

∑
p∈P (i) d(p, C(i)). We also define W (C) =

∑t
i=1 max{0, cost(i; C) − r}.

Intuitively, the quantity W (C) measures how far the solution C is from the optimum; in
particular, if W (C) = 0 then the spatial cost is within the desired bound.

I Lemma 15. The set function −W is submodular.

Proof. Since the sum of submodular functions is submodular, it is enough to show that
−max{0, cost(i; C) − r} = min{0,−cost(i; C) + r} is submodular. Thus it suffices to show
that −cost(i; C) is submodular, and thus it suffices to show that −d(p, C(i)), for all p ∈ P (i),
which is immediate since d(p, C(i)) = minτ∈C d(p, τ(i)). J

Algorithm. Our goal is to compute some set of trajectories C such that W (C) is sufficiently
small, while minimizing |C|. The algorithm consists of the following steps:
Step 1. Let C0 be a set containing a single arbitrary trajectory.
Step 2. For any i ∈ [L], let τi be a minimizer of W (Ci−1 ∪ {τi}). Set Ci = Ci−1 ∪ {τi}.
Step 3. Return CL.

The parameter L > 0 will be determined later. The following Lemma bounds the running
time of Step 2.
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I Lemma 16. Given a clustering C, we can find τ minimizingW (C∪{τ}), in time poly(|C|, n).

The above Lemma can be done via dynamic programming. The proof is essentially the
same as in Lemma 13 and is thus omitted. We next show that for some value of L, the
algorithm computes a low cost solution. To that end, we argue that with each iteration of
the main loop, W (Ci) decreases significantly.

I Lemma 17. If I admits a temporal (k, r, δ)-median-clustering, then for any i ∈ {1, . . . , L},
there exists some feasible trajectory σi such that W (Ci−1 ∪ {σi}) ≤ (1− 1/k) ·W (Ci−1).

Proof. Let C∗ = {τ∗1 , . . . , τ∗k′} be a set of at most k trajectories that yields a (k, r, δ)-
median temporal clustering. W.l.o.g. we may assume that k′ = k. Let K0 = W (Ci−1), and
for any j ∈ [k], let Kj = W (Ci−1 ∪ {τ∗1 , . . . , τ∗j }). Since C∗ is a (k, r, δ)-median temporal
clustering, it follows thatW (Ci−1) = K0 ≥ K1 ≥ . . . ≥ Kk = 0. For any j ∈ [k], we also define
K ′j = W (Ci−1∪{τ∗j }). By Lemma 15 we have that for all j ∈ [k],W (Ci−1)−W (Ci−1∪{τ∗j }) ≥
W (Ci−1 ∪ {τ∗1 , . . . , τ∗j−1}) −W (Ci−1 ∪ {τ∗1 , . . . , τ∗j }). That is, K0 −K ′j ≥ Kj−1 −Kj . Let
` = arg maxj∈[k]{K0−K ′j}. It follows thatK0−K ′` = maxj∈[k]{K0−K ′j} ≥ maxj∈[k]{Kj−1−
Kj} ≥ 1

k

∑k
j=1(Kj−1 −Kj) = (K0 −Kk)/k = K0/k. Let σi = τ∗` . It immediately follows

that W (Ci−1 ∪ {σi}) = K ′` ≤ (1− 1/k) ·K0 = (1− 1/k) ·W (Ci−1), concluding the proof. J

We are now ready to prove Theorem 6.

Proof of Theorem 6. We first note that if r = 0, then a solution with k trajectories can
be computed, if one exists, as follows: Since r = 0, it follows that every level of P has at
most k points. We construct the flow network instance Nδ(P, P ), as in Section 2.1. It is
immediate that the flow instance is feasible iff there exists a solution with k trajectories.
We may thus assume that r > 0. Since the minimum distance in M is 1, it follows that
r ≥ 1. In a generic step 1 ≤ i ≤ L, let τi denote the trajectory returned by the dynamic
program of Lemma 16, which minimizes W (C ∪ {τi}). By Lemma 17, if I admits a temporal
(k, r, δ)-median-clustering, then there exists some trajectory σi such that W (Ci−1 ∪ {σi}) ≤
(1−1/k) ·W (Ci−1). ThusW (Ci) = W (Ci−1∪{τi}) ≤W (Ci−1∪{σi}) ≤ (1−1/k) ·W (Ci−1) ≤
(1 − 1/k)i ·W (C0). Since the diameter of M is ∆, we get W (C0) ≤ ∆

∑
i∈[t] |P (i)| = ∆n.

Setting L = k ln(n∆/ε) = O(k log(n∆/ε)), we obtainW (CL) ≤ (1−1/k)Ln∆ ≤ ε ≤ εr. Thus
maxi∈[t] max{0, cost(i; CL)−r} ≤

∑t
i=1 max{0, cost(i; CL)−r} ≤ εr, which implies rad1(CL) =

maxi∈[t] cost(i; C) ≤ (1 + ε)r. It follows that either CL is a (L, 1 + ε, 1)-approximation, or I
does not admit a (k, r, δ)-median-clustering. Finally, the running time follows by the fact
that we perform L iterations of the main loop; each in time bounded by Lemma 16. J

3 Inapproximability and Conclusion

We now briefly state our inapproximability results. Due to space constraints we defer all proofs
to the full version [9]. There, we show that it is NP-hard to obtain a (1, poly(n), poly(n))-
approximation, complementing Theorem 1. Further, we show that the problem remains
hard to approximate, even for an inexact number of clusters where the points are taken
from a nice metric space. Specifically, we prove that (1.005, 2− ε, poly(n))-approximation
is NP-hard for points sampled from 2-dimensional Euclidean space. We show that the
(lnn, 1, 1)-approximation (Theorem 2) is best possible by observing that ((1−ε) lnn, 2−ε′, ·)-
approximation is NP-hard, though the construction involves a somewhat unnatural metric
space. Finally, we adapt the hardness results for (1, poly(n), poly(n))-approximation and
(1.005, 2− ε, poly(n))-approximation to Temporal k-Median/Means.
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Conclusion. Our results show that many instances of temporal clustering are hard to
approximate. On the other hand, our polynomial time approximations show that sometimes
if we allow approximations in terms of parameters like r/δ or the spread ∆, the approximation
becomes tractable. We wish to better understand the boundary between these cases. Another
direction comes from altering the model; an alternative formulation could allow centers from
the ambient metric space. We plan to investigate this model in future research.
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