19 research outputs found

    Serologically defined variations in malaria endemicity in Pará state, Brazil

    Get PDF
    BACKGROUND: Measurement of malaria endemicity is typically based on vector or parasite measures. A complementary approach is the detection of parasite specific IgG antibodies. We determined the antibody levels and seroconversion rates to both P. vivax and P. falciparum merozoite antigens in individuals living in areas of varying P. vivax endemicity in Pará state, Brazilian Amazon region. METHODOLOGY/PRINCIPAL FINDINGS: The prevalence of antibodies to recombinant antigens from P. vivax and P. falciparum was determined in 1,330 individuals. Cross sectional surveys were conducted in the north of Brazil in Anajás, Belém, Goianésia do Pará, Jacareacanga, Itaituba, Trairão, all in the Pará state, and Sucuriju, a free-malaria site in the neighboring state Amapá. Seroprevalence to any P. vivax antigens (MSP1 or AMA-1) was 52.5%, whereas 24.7% of the individuals were seropositive to any P. falciparum antigens (MSP1 or AMA-1). For P. vivax antigens, the seroconversion rates (SCR) ranged from 0.005 (Sucuriju) to 0.201 (Goianésia do Pará), and are strongly correlated to the corresponding Annual Parasite Index (API). We detected two sites with distinct characteristics: Goianésia do Pará where seroprevalence curve does not change with age, and Sucuriju where seroprevalence curve is better described by a model with two SCRs compatible with a decrease in force of infection occurred 14 years ago (from 0.069 to 0.005). For P. falciparum antigens, current SCR estimates varied from 0.002 (Belém) to 0.018 (Goianésia do Pará). We also detected a putative decrease in disease transmission occurred ∼29 years ago in Anajás, Goianésia do Pará, Itaituba, Jacareacanga, and Trairão. CONCLUSIONS: We observed heterogeneity of serological indices across study sites with different endemicity levels and temporal changes in the force of infection in some of the sites. Our study provides further evidence that serology can be used to measure and monitor transmission of both major species of malaria parasite

    Perceptions of the appropriate response to norm violation in 57 societies

    Get PDF
    An Author Correction to this article: DOI: 10.1038/s41467-021-22955-x.Norm enforcement may be important for resolving conflicts and promoting cooperation. However, little is known about how preferred responses to norm violations vary across cultures and across domains. In a preregistered study of 57 countries (using convenience samples of 22,863 students and non-students), we measured perceptions of the appropriateness of various responses to a violation of a cooperative norm and to atypical social behaviors. Our findings highlight both cultural universals and cultural variation. We find a universal negative relation between appropriateness ratings of norm violations and appropriateness ratings of responses in the form of confrontation, social ostracism and gossip. Moreover, we find the country variation in the appropriateness of sanctions to be consistent across different norm violations but not across different sanctions. Specifically, in those countries where use of physical confrontation and social ostracism is rated as less appropriate, gossip is rated as more appropriate.Peer reviewe

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Serologically Defined Variations in Malaria Endemicity in Pará State, Brazil. Supplementary dataset

    No full text
    An epidemiological and serological data set published to support the PLOS ONE paper, "Serologically Defined Variations in Malaria Endemicity in Pará State, Brazil". Data held on Figshare

    Statistical analysis of antibody titers data.

    No full text
    <p>Age-adjusted log10-transformed antibody titer profiles for any <i>P. vivax</i> (blue solid lines) or <i>P. falciparum</i> antigens (red solid lines) using appropriate Michaelis-Menten models. Blue- and red-filled circles represent the observed mean antibody titer after pooling the data according to the 10%-centiles of the underlying age distribution. The antibody levels refer to the maximum among these reacting to AMA1 and the MSP1 antigens.</p

    Baseline characteristics of the study area where all municipalities are in the Pará state with the exception of Sucuriju village (in the Amapá state).

    No full text
    a<p>Annual Parasite Index at the year of survey with the respective classification (low or high) as reported by the Brazilian Ministry of Health (<a href="http://www.saude.gov.br/sivep_malaria" target="_blank">www.saude.gov.br/sivep_malaria</a>).</p><p>Sucuriju village is usually considered as malaria-free area.</p><p>Baseline characteristics of the study area where all municipalities are in the Pará state with the exception of Sucuriju village (in the Amapá state).</p

    Statistical analysis of seropositivity data.

    No full text
    <p><b>A</b>. Age-adjusted seroprevalence for any <i>P. vivax</i> (blue solid lines) or <i>P. falciparum</i> antigens (red solid lines) using appropriate reversible catalytic models. The observed seroprevalences for each <i>Plasmodium</i> species (blue- and red-filled circles) were pooled according to the 10%-centiles of the underlying age distribution. Note that Sucuriju data for <i>P. falciparum</i> were excluded from the analysis due to the small number of sero-positive individuals (two cases only). <b>B.</b> Correlation analysis for any <i>P. vivax</i> antigens using the annual parasite index versus seroconversion rate.</p
    corecore