7 research outputs found

    Development and validation of a visual grading scale for assessing image quality of AP pelvis radiographic images

    Get PDF
    OBJECTIVE: Apply psychometric theory to develop and validate a visual grading scale for assessing visual perception of AP pelvis digital image quality. METHODS: Psychometric theory was used to guide scale development. Seven phantom and 7 cadaver images of visually and objectively predetermined quality were used to help assess scale reliability and validity. 151 volunteers scored phantom images; 184 volunteers scored cadaver images. Factor analysis and Cronbach’s alpha were used to assess scale validity and reliability. RESULTS: A 24 item scale was produced. Aggregated mean volunteer scores for each image correlated with the rank order of the visually and objectively predetermined image qualities. Scale items had good inter-item correlation (≥0.2) and high factor loadings (≥0.3). Cronbach's alpha (reliability) revealed that the scale has acceptable levels of internal reliability for both phantom and cadaver images (α= 0.8 and 0.9, respectively). Factor analysis suggested the scale is multidimensional (assessing multiple quality themes). CONCLUSION: This study represents the first full development and validation of a visual image quality scale using psychometric theory. It is likely that this scale will have clinical, training and research applications. ADVANCES IN KNOWLEDGE: This article presents data to create and validate visual grading scales for radiographic examinations. The visual grading scale, for AP pelvis examinations, can act as a validated tool for future research, teaching and clinical evaluations of image quality

    Using fluoroscopy safely

    No full text

    Neuroprotective Effects of Glucosinolates

    No full text
    Oxidative stress, excitotoxicity, inflammation, misfolded proteins, and neuronal loss are common characteristics of a wide range of chronic neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis. For these disorders, the current healthcare outcomes are considered inadequate; in fact these pathologies are treated after onset of the disease, frequently at near end-stages, and pessimistic prognosis considers pandemic scenario for these disorders over the next 10–20 years. Phytochemicals have been regarded as an alternative and preventive therapeutic strategy to control the occurrence and progression of neurodegenerative diseases. Recent research has shown that dietary phytochemicals have pleiotropic behaviors, exerting antioxidant, anti-inflammatory, and cytoprotective effects in neuronal and glial cells. In particular, isothiocyanates, the activated form of glucosinolates present in Brassica vegetables, have shown neuroprotective activity in several experimental paradigms due to their peculiar ability to activate the Nrf2/ARE pathway, playing a role in boosting the neuronal natural phase 2 enzyme antioxidant defense system and functioning as a powerful indirect antioxidant. This chapter summarizes the preventive glucosinolate-derived isothiocyanates effects in neurodegeneration and underscores the powerful preventive role that these compounds play in assisting the body to help fend off a variety of neurodegenerative diseases
    corecore