70 research outputs found

    The International Urban Energy Balance Models Comparison Project: First Results from Phase 1

    Get PDF
    A large number of urban surface energy balance models now exist with different assumptions about the important features of the surface and exchange processes that need to be incorporated. To date, no com- parison of these models has been conducted; in contrast, models for natural surfaces have been compared extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes. Here, the methods and first results from an extensive international comparison of 33 models are presented. The aim of the comparison overall is to understand the complexity required to model energy and water exchanges in urban areas. The degree of complexity included in the models is outlined and impacts on model performance are discussed. During the comparison there have been significant developments in the models with resulting improvements in performance (root-mean-square error falling by up to two-thirds). Evaluation is based on a dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in Vancouver, British Columbia, Canada. The aim of the comparison is twofold: to identify those modeling ap- proaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the degree of model complexity required for accurate simulations. There is evidence that some classes of models perform better for individual fluxes but no model performs best or worst for all fluxes. In general, the simpler models perform as well as the more complex models based on all statistical measures. Generally the schemes have best overall capability to model net all-wave radiation and least capability to model latent heat flux

    Bioclimatic Architecture and Urban Morphology. Studies on Intermediate Urban Open Spaces

    Get PDF
    This paper deals with the interactions between biophysical and microclimatic factors on the one hand with, on the other, the urban morphology of intermediate urban open spaces, the relationship between environmental and bioclimatic thermal comfort, and the implementation of innovative materials and the use of greenery, aimed at the users’ well-being. In particular, the thermal comfort of the open spaces of the consolidated fabrics of the city of Rome is studied, by carrying out simulations of cooling strategies relating to two scenarios applied to Piazza Bainsizza. The first scenario involves the use of cool materials for roofs, cladding surfaces, and pavement, while the second scenario, in addition to the cool materials employed in the first scenario, also includes the use of greenery and permeable green surfaces. The research was performed using summer and winter microclimatic simulations of the CFD (ENVI-met v. 3.1) type, in order to determine the dierent influences of the materials with cold colors, trees, and vegetated surfaces on the thermal comfort of the urban morphology itself. Meanwhile, the comfort assessment was determined through the physiological equivalent temperature (PET) calculated with the RayMan program. The first scenario, with the use of cool materials, improves summer conditions and reduces the urban heat island eect but does not eliminate thermal discomfort due to the lack of shaded surfaces and vegetation. The second scenario, where material renovations is matched with vegetation improvements, has a slightly bad eect on winter conditions but drastically ameliorates the summer situation, both for direct users and, thanks to the strong reduction of the urban heat island eect, to urban inhabitants as a whole

    Optimising UK urban road verge contributions to biodiversity and ecosystem services with cost-effective management

    Get PDF
    Urban road verges can contain significant biodiversity, contribute to structural connectivity between other urban greenspaces, and due to their proximity to road traffic are well placed to provide ecosystem services. Using the UK as a case study we review and critically evaluate a broad range of evidence to assess how this considerable potential can be enhanced despite financial, contractual and public opinion constraints. Reduced mowing frequency and other alterations would enhance biodiversity, aesthetics and pollination services, whilst delivering costs savings and potentially being publically acceptable. Retaining mature trees and planting additional ones is favourable to residents and would enhance biodiversity, pollution and climate regulation, carbon storage, and stormwater management. Optimising these services requires improved selection of tree species, and creating a more diverse tree stock. Due to establishment costs additional tree planting and maintenance could benefit from payment for ecosystem service schemes. Verges could also provide areas for cultivation of biofuels and possibly food production. Maximising the contribution of verges to urban biodiversity and ecosystem services is economical and becoming an increasingly urgent priority as the road network expands and other urban greenspace is lost, requiring enhancement of existing greenspace to facilitate sustainable urban development

    Thermal comfort in urban spaces: a cross-cultural study in the hot arid climate

    Get PDF
    This cross-cultural research is an inaugural attempt to investigate the outdoor thermal comfort and the effect of cultural and social differences in hot arid climates. Case studies were carefully selected in two different parts of the world (Marrakech in North Africa and Phoenix, Arizona, in North America) to represent two different cultures in similar climatic context. Field surveys, carried out during winter and summer, included structured interviews with a standard questionnaire, observations and microclimatic monitoring. The results demonstrate a wide thermal comfort zone and prevalence of air-conditioning influencing thermal comfort requirements. The work also provides evidence of substantial cross-cultural differences in thermal comfort requirements between residents in Marrakech and Phoenix. It shows that adaptive measures, such as level of clothing, changing place, cold drinks consumption and thermal experience, varies between cultures and this influences the thermal evaluation of visitors in outdoor spaces in the hot arid climate. Evidence between the time spent in outdoor spaces and thermal expectations has been found. Moreover, environmental variables such as air temperature and solar radiation have a great impact on the use of the outdoor spaces in the hot arid climate and may determine the number of people in urban spaces. The study also identified significant differences in thermal comfort requirements between different socio-economic groups, highlighting the need for comfortable open spaces

    Definição de faixas de conforto e desconforto térmico para espaços abertos em Curitiba, PR, com o índice UTCI

    Get PDF
    O planejamento e a readequação urbana de espaços abertos são capazes de promover a melhoria das condições térmicas externas, ifluenciando positivamente o uso de espaços abertos. Neste contexto, foi realizada uma pesquisa para analisar o conforto térmico de transeuntes em ruas de pedestre em Curitiba, Paraná. Este artigo tem como objetivo definir faixas de conforto e desconforto térmico para Curitiba, propondo tais faixas para o índice UTCI (Universal Thermal Climate Index) para as condições climáticas locais a partir de um percentual aceitável de pessoas insatisfeitas com o ambiente térmico no espaço aberto. Para tal, foram analisados dados climáticos e dados pessoais obtidos por meio de monitoramento de campo em ruas de pedestre. Conclui-se que o índice UTCI teve boa capacidade preditiva para a amostra analisada e que as diferenças entre os subgrupos gênero, idade e índice de massa corpórea eram pequenas. A partir das análises das respostas reais de sensação térmica sugerem-se as seguintes faixas de conforto/desconforto térmico: desconforto para o frio, Ta < 15ºC; conforto, 15ºC < Ta < 24ºC e desconforto para o calor, Ta &gt; 24ºC. A análise do índice UTCI mostrou a necessidade de calibração das faixas, sendo sugeridas as seguintes faixas para situações climáticas similares às de Curitiba: desconforto para o frio, Ta < 15ºC; conforto, 15ºC < Ta < 27ºC e desconforto para o calor, Ta &gt; 27ºC

    Effects of urban green infrastructure (UGI) on local outdoor microclimate during the growing season

    Full text link
    This study analyzed how the variations of plant area index (PAI) and weather conditions alter the influence of urban green infrastructure (UGI) on microclimate. To observe how diverse UGIs affect the ambient microclimate through the seasons, microclimatic data were measured during the growing season at five sites in a local urban area in The Netherlands. Site A was located in an open space; sites B, C, and D were covered by different types and configurations of green infrastructure (grove, a single deciduous tree, and street trees, respectively); and site E was adjacent to buildings to study the effects of their façades on microclimate. Hemispherical photography and globe thermometers were used to quantify PAI and thermal comfort at both shaded and unshaded locations. The results showed that groves with high tree density (site B) have the strongest effect on microclimate conditions. Monthly variations in the differences of mean radiant temperature (∆Tmrt) between shaded and unshaded areas followed the same pattern as the PAI. Linear regression showed a significant positive correlation between PAI and ∆Tmrt. The difference of daily average air temperature (∆Ta) between shaded and unshaded areas was also positively correlated to PAI, but with a slope coefficient below the measurement accuracy (±0.5 °C). This study showed that weather conditions can significantly impact the effectiveness of UGI in regulating microclimate. The results of this study can support the development of appropriate UGI measures to enhance thermal comfort in urban areas

    Health and climate related ecosystem services provided by street trees in the urban environment

    Full text link

    Inclusion of vegetation in the Town Energy Balance model for modelling urban green areas

    Get PDF
    International audienceCities impact both local climate, through urban heat islands and global climate, because they are an area of heavy greenhouse gas release into the atmosphere due to heating, air conditioning and traffic. Including more vegetation into cities is a planning strategy having possible positive impacts for both concerns. Improving vegetation representation into urban models will allow us to address more accurately these questions. This paper presents an improvement of the Town Energy Balance (TEB) urban canopy model. Vegetation is directly included inside the canyon, allowing shadowing of grass by buildings, better representation of urban canopy form and, a priori, a more accurate simulation of canyon air microclimate. The surface exchanges over vegetation are modelled with the well-known Interaction Soil Biosphere Atmosphere (ISBA) model that is integrated in the TEB's code architecture in order to account for interactions between natural and built-up covers. The design of the code makes possible to plug and use any vegetation scheme. Both versions of TEB are confronted to experimental data issued from a field campaign conducted in Israel in 2007. Two semi-enclosed courtyards arranged with bare soil or watered lawn were instrumented to evaluate the impact of landscaping strategies on microclimatic variables and evapotranspira-tion. For this case study, the new version of the model with integrated vegetation performs better than if vegetation is treated outside the canyon. Surface temperatures are closer to the observations, especially at night when radiative trapping is important. The integrated vegetation version simulates a more humid air inside the canyon. The microclimatic quantities (i.e., the street-level meteorological variables) are better simulated with this new version. This opens opportunities to study with better accuracy the urban microclimate, down to the micro (or canyon) scale
    corecore