256 research outputs found

    Systemic Inflammation in Young Adults Is Associated with Abnormal Lung Function in Middle Age

    Get PDF
    BACKGROUND:Systemic inflammation is associated with reduced lung function in both healthy individuals and those with chronic obstructive pulmonary disease (COPD). Whether systemic inflammation in healthy young adults is associated with future impairment in lung health is uncertain. METHODOLOGY/PRINCIPAL FINDINGS:We evaluated the association between plasma fibrinogen and C-reactive protein (CRP) in young adults and lung function in the Coronary Artery Risk Development in Young Adults cohort study. Higher year 7 fibrinogen was associated with greater loss of forced vital capacity (FVC) between years 5 and 20 (439 mL in quartile 4 vs. 398 mL in quartile 1, P<0.001) and forced expiratory volume in 1 second (FEV(1)) (487 mL in quartile 4 vs. 446 mL in quartile 1, P<0.001) independent of cigarette smoking, body habitus, baseline lung function and demographic factors. Higher year 7 CRP was also associated with both greater loss of FVC (455 mL in quartile 4 vs. 390 mL in quartile 1, P<0.001) and FEV(1) (491 mL in quartile 4 vs. 442 mL in quartile 1, P = 0.001). Higher year 7 fibrinogen and CRP were associated with abnormal FVC at year 20 (odds ratio (OR) per standard deviation 1.51 (95% confidence interval (CI): 1.30-1.75) for fibrinogen and 1.35 (95% CI: 1.14-1.59) for CRP). Higher year 5 fibrinogen was additionally associated with abnormal FEV(1). A positive interaction was observed between pack-years cigarette smoking and year 7 CRP for the COPD endpoint, and among participants with greater than 10 pack-years of cigarette exposure, year 7 CRP was associated with greater odds of COPD at year 20 (OR per standard deviation 1.53 (95% CI: 1.08-2.16). CONCLUSION/SIGNIFICANCE:Systemic inflammation in young adults is associated with abnormal lung function in middle age. In particular, elevated CRP may identify vulnerability to COPD among individuals who smoke. TRIAL REGISTRATION:ClinicalTrials.gov NCT00005130

    Bacterial biogeography of adult airways in atopic asthma

    Get PDF
    Abstract Background Perturbations to the composition and function of bronchial bacterial communities appear to contribute to the pathophysiology of asthma. Unraveling the nature and mechanisms of these complex associations will require large longitudinal studies, for which bronchoscopy is poorly suited. Studies of samples obtained by sputum induction and nasopharyngeal brushing or lavage have also reported asthma-associated microbiota characteristics. It remains unknown, however, whether the microbiota detected in these less-invasive sample types reflect the composition of bronchial microbiota in asthma. Results Bacterial microbiota in paired protected bronchial brushings (BB; n = 45), induced sputum (IS; n = 45), oral wash (OW; n = 45), and nasal brushings (NB; n = 27) from adults with mild atopic asthma (AA), atopy without asthma (ANA), and healthy controls (HC) were profiled using 16S rRNA gene sequencing. Though microbiota composition varied with sample type (p < 0.001), compositional similarity was greatest for BB-IS, particularly in AAs and ANAs. The abundance of genera detected in BB correlated with those detected in IS and OW (r median [IQR] 0.869 [0.748–0.942] and 0.822 [0.687–0.909] respectively), but not with those in NB (r = 0.004 [− 0.003–0.011]). The number of taxa shared between IS-BB and NB-BB was greater in AAs than in HCs (p < 0.05) and included taxa previously associated with asthma. Of the genera abundant in NB, only Moraxella correlated positively with abundance in BB; specific members of this genus were shared between the two compartments only in AAs. Relative abundance of Moraxella in NB of AAs correlated negatively with that of Corynebacterium but positively with markers of eosinophilic inflammation in the blood and BAL fluid. The genus, Corynebacterium, trended to dominate all NB samples of HCs but only half of AAs (p = 0.07), in whom abundance of this genus was negatively associated with markers of eosinophilic inflammation. Conclusions Induced sputum is superior to nasal brush or oral wash for assessing bronchial microbiota composition in asthmatic adults. Although compositionally similar to the bronchial microbiota, the microbiota in induced sputum are distinct, reflecting enrichment of oral bacteria. Specific bacterial genera are shared between the nasal and the bronchial mucosa which are associated with markers of systemic and bronchial inflammation.https://deepblue.lib.umich.edu/bitstream/2027.42/144218/1/40168_2018_Article_487.pd

    Development of Bacterial Biofilms on Artificial Corals in Comparison to Surface-Associated Microbes of Hard Corals

    Get PDF
    Numerous studies have demonstrated the differences in bacterial communities associated with corals versus those in their surrounding environment. However, these environmental samples often represent vastly different microbial micro-environments with few studies having looked at the settlement and growth of bacteria on surfaces similar to corals. As a result, it is difficult to determine which bacteria are associated specifically with coral tissue surfaces. In this study, early stages of passive settlement from the water column to artificial coral surfaces (formation of a biofilm) were assessed. Changes in bacterial diversity (16S rRNA gene), were studied on artificially created resin nubbins that were modelled from the skeleton of the reef building coral Acropora muricata. These models were dip-coated in sterile agar, mounted in situ on the reef and followed over time to monitor bacterial community succession. The bacterial community forming the biofilms remained significantly different (R = 0.864 p<0.05) from that of the water column and from the surface mucus layer (SML) of the coral at all times from 30 min to 96 h. The water column was dominated by members of the α-proteobacteria, the developed community on the biofilms dominated by γ-proteobacteria, whereas that within the SML was composed of a more diverse array of groups. Bacterial communities present within the SML do not appear to arise from passive settlement from the water column, but instead appear to have become established through a selection process. This selection process was shown to be dependent on some aspects of the physico-chemical structure of the settlement surface, since agar-coated slides showed distinct communities to coral-shaped surfaces. However, no significant differences were found between different surface coatings, including plain agar and agar enhanced with coral mucus exudates. Therefore future work should consider physico-chemical surface properties as factors governing change in microbial diversity

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Expansion and Characterization of Human Melanoma Tumor-Infiltrating Lymphocytes (TILs)

    Get PDF
    Various immunotherapeutic strategies for cancer are aimed at augmenting the T cell response against tumor cells. Adoptive cell therapy (ACT), where T cells are manipulated ex vivo and subsequently re-infused in an autologous manner, has been performed using T cells from various sources. Some of the highest clinical response rates for metastatic melanoma have been reported in trials using tumor-infiltrating lymphocytes (TILs). These protocols still have room for improvement and furthermore are currently only performed at a limited number of institutions. The goal of this work was to develop TILs as a therapeutic product at our institution.TILs from 40 melanoma tissue specimens were expanded and characterized. Under optimized culture conditions, 72% of specimens yielded rapidly proliferating TILs as defined as at least one culture reaching ≥3×10(7) TILs within 4 weeks. Flow cytometric analyses showed that cultures were predominantly CD3+ T cells, with highly variable CD4+:CD8+ T cell ratios. In total, 148 independent bulk TIL cultures were assayed for tumor reactivity. Thirty-four percent (50/148) exhibited tumor reactivity based on IFN-γ production and/or cytotoxic activity. Thirteen percent (19/148) showed specific cytotoxic activity but not IFN-γ production and only 1% (2/148) showed specific IFN-γ production but not cytotoxic activity. Further expansion of TILs using a 14-day "rapid expansion protocol" (REP) is required to induce a 500- to 2000-fold expansion of TILs in order to generate sufficient numbers of cells for current ACT protocols. Thirty-eight consecutive test REPs were performed with an average 1865-fold expansion (+/- 1034-fold) after 14 days.TILs generally expanded efficiently and tumor reactivity could be detected in vitro. These preclinical data from melanoma TILs lay the groundwork for clinical trials of ACT

    Immunodominant HIV-1 Cd4+ T Cell Epitopes in Chronic Untreated Clade C HIV-1 Infection

    Get PDF
    Background: A dominance of Gag-specific CD8+ T cell responses is significantly associated with a lower viral load in individuals with chronic, untreated clade C human immunodeficiency virus type 1 (HIV-1) infection. This association has not been investigated in terms of Gag-specific CD4+ T cell responses, nor have clade C HIV-1–specific CD4+ T cell epitopes, likely a vital component of an effective global HIV-1 vaccine, been identified. Methodology/Principal Findings: Intracellular cytokine staining was conducted on 373 subjects with chronic, untreated clade C infection to assess interferon-gamma (IFN-γ) responses by CD4+ T cells to pooled Gag peptides and to determine their association with viral load and CD4 count. Gag-specific IFN-γ–producing CD4+ T cell responses were detected in 261/373 (70%) subjects, with the Gag responders having a significantly lower viral load and higher CD4 count than those with no detectable Gag response (p<0.0001 for both parameters). To identify individual peptides targeted by HIV-1–specific CD4+ T cells, separate ELISPOT screening was conducted on CD8-depleted PBMCs from 32 chronically infected untreated subjects, using pools of overlapping peptides that spanned the entire HIV-1 clade C consensus sequence, and reconfirmed by flow cytometry to be CD4+ mediated. The ELISPOT screening identified 33 CD4+ peptides targeted by 18/32 patients (56%), with 27 of the 33 peptides located in the Gag region. Although the breadth of the CD4+ responses correlated inversely with viral load (p = 0.015), the magnitude of the response was not significantly associated with viral load. Conclusions/Significance: These data indicate that in chronic untreated clade C HIV-1 infection, IFN-γ–secreting Gag-specific CD4+ T cell responses are immunodominant, directed at multiple distinct epitopes, and associated with viral control
    corecore