38 research outputs found
Synthesis of iron-doped TiO2 nanoparticles by ball-milling process : the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties
Titanium dioxide (TiO2) absorbs only a small
fraction of incoming sunlight in the visible region thus
limiting its photocatalytic efficiency and concomitant
photocatalytic ability. The large-scale application of TiO2
nanoparticles has been limited due to the need of using an
ultraviolet excitation source to achieve high photocatalytic
activity. The inclusion of foreign chemical elements in the
TiO2 lattice can tune its band gap resulting in an absorption
edge red-shifted to lower energies enhancing the photocatalytic
performance in the visible region of the electromagnetic
spectrum. In this research work, TiO2
nanoparticles were doped with iron powder in a planetary
ball-milling system using stainless steel balls. The
correlation between milling rotation speeds with structural
and morphologic characteristics, optical and magnetic
properties, and photocatalytic abilities of bare and Fedoped
TiO2 powders was studied and discussed.This work was partially financed by FCT-Fundacao para a Ciencia e Tecnologia-under the project PTDC/FIS/120412/2010: "Nanobased concepts for Innovative & Eco-sustainable constructive material's surfaces.