81 research outputs found

    High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources

    Get PDF
    Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), are explored for use in diagnostics, therapeutics and drug delivery. However, little is known about the relationship of protein and lipid composition of EVs and their source cells. Here, we report high-resolution lipidomic and proteomic analyses of exosomes and MVs derived by differential ultracentrifugation from 3 different cell types: U87 glioblastoma cells, Huh7 hepatocellular carcinoma cells and human bone marrow-derived mesenchymal stem cells (MSCs). We identified 3,532 proteins and 1,961 lipid species in the screen. Exosomes differed from MVs in several different areas: (a) The protein patterns of exosomes were more likely different from their cells of origin than were the protein patterns of MVs; (b) The proteomes of U87 and Huh7 exosomes were similar to each other but different from the proteomes of MSC exosomes, whereas the lipidomes of Huh7 and MSC exosomes were similar to each other but different from the lipidomes of U87 exosomes; (c) exosomes exhibited proteins of extracellular matrix, heparin-binding, receptors, immune response and cell adhesion functions, whereas MVs were enriched in endoplasmic reticulum, proteasome and mitochondrial proteins. Exosomes and MVs also differed in their types of lipid contents. Enrichment in glycolipids and free fatty acids characterized exosomes, whereas enrichment in ceramides and sphingomyelins characterized MVs. Furthermore, Huh7 and MSC exosomes were specifically enriched in cardiolipins; U87 exosomes were enriched in sphingomyelins. This study comprehensively analyses the protein and lipid composition of exosomes, MVs and source cells in 3 different cell types

    The impact of ADHD and conduct disorder in childhood on adult delinquency: A 30 years follow-up study using official crime records

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Few longitudinal studies have explored lifetime criminality in adults with a childhood history of severe mental disorders. In the present study, we wanted to explore the association between adult delinquency and several different childhood diagnoses in an in-patient population. Of special interest was the impact of disturbance of activity and attention (ADHD) and mixed disorder of conduct and emotions on later delinquency, as these disorders have been variously associated with delinquent development.</p> <p>Methods</p> <p>Former Norwegian child psychiatric in-patients (n = 541) were followed up 19-41 years after hospitalization by record linkage to the National Register of Criminality. On the basis of the hospital records, the patients were re-diagnosed according to ICD-10. The association between diagnoses and other baseline factors and later delinquency were investigated using univariate and multivariate Cox regression analyses.</p> <p>Results</p> <p>At follow-up, 24% of the participants had been convicted of criminal activity.</p> <p>In the multivariate Cox regression analysis, conduct disorder (RR = 2.0, 95%CI = 1.2-3.4) and hyperkinetic conduct disorder (RR = 2.7, 95% CI = 1.6-4.4) significantly increased the risk of future criminal behaviour. Pervasive developmental disorder (RR = 0.4, 95%CI = 0.2-0.9) and mental retardation (RR = 0.4, 95%CI = 0.3-0.8) reduced the risk for a criminal act. Male gender (RR = 3.6, 95%CI = 2.1-6.1) and chronic family difficulties (RR = 1.3, 95% CI = 1.1-1.5) both predicted future criminality.</p> <p>Conclusions</p> <p>Conduct disorder in childhood was highly associated with later delinquency both alone or in combination with hyperactivity, but less associated when combined with an emotional disorder. ADHD in childhood was no more associated with later delinquency than the rest of the disorders in the study population. Our finding strengthens the assumption that there is no direct association between ADHD and criminality.</p

    Genome-wide analysis of BMI in adolescents and young adults reveals additional insight into the effects of genetic loci over the life course

    Get PDF
    Genetic loci for body mass index (BMI) in adolescence and young adulthood, a period of high risk for weight gain, are understudied, yet may yield important insight into the etiology of obesity and early intervention. To identify novel genetic loci and examine the influence of known loci on BMI during this critical time period in late adolescence and early adulthood, we performed a two-stage meta-analysis using 14 genome-wide association studies in populations of European ancestry with data on BMI between ages 16 and 25 in up to 29 880 individuals. We identified seven independent loci (P < 5.0 × 10−8) near FTO (P = 3.72 × 10−23), TMEM18 (P = 3.24 × 10−17), MC4R (P = 4.41 × 10−17), TNNI3K (P = 4.32 × 10−11), SEC16B (P = 6.24 × 10−9), GNPDA2 (P = 1.11 × 10−8) and POMC (P = 4.94 × 10−8) as well as a potential secondary signal at the POMC locus (rs2118404, P = 2.4 × 10−5 after conditioning on the established single-nucleotide polymorphism at this locus) in adolescents and young adults. To evaluate the impact of the established genetic loci on BMI at these young ages, we examined differences between the effect sizes of 32 published BMI loci in European adult populations (aged 18-90) and those observed in our adolescent and young adult meta-analysis. Four loci (near PRKD1, TNNI3K, SEC16B and CADM2) had larger effects and one locus (near SH2B1) had a smaller effect on BMI during adolescence and young adulthood compared with older adults (P < 0.05). These results suggest that genetic loci for BMI can vary in their effects across the life course, underlying the importance of evaluating BMI at different age

    Genome-wide analysis of BMI in adolescents and young adults reveals additional insight into the effects of genetic loci over the life course

    Get PDF
    Genetic loci for body mass index (BMI) in adolescence and young adulthood, a period of high risk for weight gain, are understudied, yet may yield important insight into the etiology of obesity and early intervention. To identify novel genetic loci and examine the influence of known loci on BMI during this critical time period in late adolescence and early adulthood, we performed a two-stage meta-analysis using 14 genome-wide association studies in populations of European ancestry with data on BMI between ages 16 and 25 in up to 29 880 individuals. We identified seven independent loci (P < 5.0 × 10−8) near FTO (P = 3.72 × 10−23), TMEM18 (P = 3.24 × 10−17), MC4R (P = 4.41 × 10−17), TNNI3K (P = 4.32 × 10−11), SEC16B (P = 6.24 × 10−9), GNPDA2 (P = 1.11 × 10−8) and POMC (P = 4.94 × 10−8) as well as a potential secondary signal at the POMC locus (rs2118404, P = 2.4 × 10−5 after conditioning on the established single-nucleotide polymorphism at this locus) in adolescents and young adults. To evaluate the impact of the established genetic loci on BMI at these young ages, we examined differences between the effect sizes of 32 published BMI loci in European adult populations (aged 18–90) and those observed in our adolescent and young adult meta-analysis. Four loci (near PRKD1, TNNI3K, SEC16B and CADM2) had larger effects and one locus (near SH2B1) had a smaller effect on BMI during adolescence and young adulthood compared with older adults (P < 0.05). These results suggest that genetic loci for BMI can vary in their effects across the life course, underlying the importance of evaluating BMI at different ages

    Consortium-based genome-wide meta-analysis for childhood dental caries traits

    Get PDF
    Prior studies suggest dental caries traits in children and adolescents are partially heritable, but there has been no large-scale consortium genome-wide association study (GWAS) to date. We therefore performed GWAS for caries in participants aged 2.5–18.0 years from nine contributing centres. Phenotype definitions were created for the presence or absence of treated or untreated caries, stratified by primary and permanent dentition. All studies tested for association between caries and genotype dosage and the results were combined using fixed-effects meta-analysis. Analysis included up to 19 003 individuals (7530 affected) for primary teeth and 13 353 individuals (5875 affected) for permanent teeth. Evidence for association with caries status was observed at rs1594318-C for primary teeth [intronic within ALLC, odds ratio (OR) 0.85, effect allele frequency (EAF) 0.60, P 4.13e-8] and rs7738851-A (intronic within NEDD9, OR 1.28, EAF 0.85, P 1.63e-8) for permanent teeth. Consortium-wide estimated heritability of caries was low [h2 of 1% (95% CI: 0%: 7%) and 6% (95% CI 0%: 13%) for primary and permanent dentitions, respectively] compared with corresponding within-study estimates [h2 of 28% (95% CI: 9%: 48%) and 17% (95% CI: 2%: 31%)] or previously published estimates. This study was designed to identify common genetic variants with modest effects which are consistent across different populations. We found few single variants associated with caries status under these assumptions. Phenotypic heterogeneity between cohorts and limited statistical power will have contributed; these findings could also reflect complexity not captured by our study design, such as genetic effects which are conditional on environmental exposure

    Consortium-based genome-wide meta-analysis for childhood dental caries traits

    Get PDF
    Prior studies suggest dental caries traits in children and adolescents are partially heritable, but there has been no large-scale consortium genome-wide association study (GWAS) to date. We therefore performed GWAS for caries in participants aged 2.5-18.0 years from nine contributing centres. Phenotype definitions were created for the presence or absence of treated or untreated caries, stratified by primary and permanent dentition. All studies tested for association between caries and genotype dosage and the results were combined using fixed-effects meta-analysis. Analysis included up to 19 003 individuals (7530 affected) for primary teeth and 13 353 individuals (5875 affected) for permanent teeth. Evidence for association with caries status was observed at rs1594318-C for primary teeth [intronic within ALLC, odds ratio (OR) 0.85, effect allele frequency (EAF) 0.60, P 4.13e-8] and rs7738851-A (intronic within NEDD9, OR 1.28, EAF 0.85, P 1.63e-8) for permanent teeth. Consortium-wide estimated heritability of caries was low [h(2) of 1% (95% CI: 0%: 7%) and 6% (95% CI 0%: 13%) for primary and permanent dentitions, respectively] compared with corresponding within-study estimates [h(2) of 28% (95% CI: 9%: 48%) and 17% (95% CI: 2%: 31%)] or previously published estimates. This study was designed to identify common genetic variants with modest effects which are consistent across different populations. We found few single variants associated with caries status under these assumptions. Phenotypic heterogeneity between cohorts and limited statistical power will have contributed; these findings could also reflect complexity not captured by our study design, such as genetic effects which are conditional on environmental exposure

    Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients

    Get PDF
    Recent developments of tau Positron Emission Tomography (PET) allows assessment of regional neurofibrillary tangles (NFTs) deposition in human brain. Among the tau PET molecular probes, 18F-AV1451 is characterized by high selectivity for pathologic tau aggregates over amyloid plaques, limited non-specific binding in white and gray matter, and confined off-target binding. The objectives of the study are (1) to quantitatively characterize regional brain tau deposition measured by 18F-AV1451 PET in cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD participants; (2) to evaluate the correlations between cerebrospinal fluid (CSF) biomarkers or Mini-Mental State Examination (MMSE) and 18F-AV1451 PET standardized uptake value ratio (SUVR); and (3) to evaluate the partial volume effects on 18F-AV1451 brain uptake.Methods: The study included total 115 participants (CN = 49, MCI = 58, and AD = 8) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed 18F-AV1451 PET images, structural MRIs, and demographic and clinical assessments were downloaded from the ADNI database. A reblurred Van Cittertiteration method was used for voxelwise partial volume correction (PVC) on PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. The parametric images of 18F-AV1451 SUVR relative to cerebellum were calculated. The ROI SUVR measurements from PVC and non-PVC SUVR images were compared. The correlation between ROI 18F-AV1451 SUVR and the measurements of MMSE, CSF total tau (t-tau), and phosphorylated tau (p-tau) were also assessed.Results:18F-AV1451 prominently specific binding was found in the amygdala, entorhinal cortex, parahippocampus, fusiform, posterior cingulate, temporal, parietal, and frontal brain regions. Most regional SUVRs showed significantly higher uptake of 18F-AV1451 in AD than MCI and CN participants. SUVRs of small regions like amygdala, entorhinal cortex and parahippocampus were statistically improved by PVC in all groups (p &lt; 0.01). Although there was an increasing tendency of 18F-AV-1451 SUVRs in MCI group compared with CN group, no significant difference of 18F-AV1451 deposition was found between CN and MCI brains with or without PVC (p &gt; 0.05). Declined MMSE score was observed with increasing 18F-AV1451 binding in amygdala, entorhinal cortex, parahippocampus, and fusiform. CSF p-tau was positively correlated with 18F-AV1451 deposition. PVC improved the results of 18F-AV-1451 tau deposition and correlation studies in small brain regions.Conclusion: The typical deposition of 18F-AV1451 tau PET imaging in AD brain was found in amygdala, entorhinal cortex, fusiform and parahippocampus, and these regions were strongly associated with cognitive impairment and CSF biomarkers. Although more deposition was observed in MCI group, the 18F-AV-1451 PET imaging could not differentiate the MCI patients from CN population. More tau deposition related to decreased MMSE score and increased level of CSF p-tau, especially in ROIs of amygdala, entorhinal cortex and parahippocampus. PVC did improve the results of tau deposition and correlation studies in small brain regions and suggest to be routinely used in 18F-AV1451 tau PET quantification

    The Affordable Care Act: The Value of Systemic Disruption

    No full text
    It is important to recognize the political and policy accomplishments of the Patient Protection and Affordable Care Act (ACA), anticipate its limitations, and use the levers it provides strategically to address the problems it does not resolve. Passage of the ACA broke the political logjam that long stymied national progress toward equitable, quality, universal, affordable health care. It extends coverage for the uninsured who are disproportionately low income and people of color, curbs health insurance abuses, and initiates improvements in the quality of care. However, challenges to affordability and cost control persist. Public health advocates should mobilize for coverage for abortion care and for immigrants, encourage public-sector involvement in negotiating health care prices, and counter disinformation by opponents on the right. (Am J Public Health. Published online ahead of print February 14, 2013: e1-e4. doi:10.2105/AJPH.2012.301180)
    corecore