139 research outputs found

    Chloride-induced alterations of the passive film on 316L stainless steel and blocking effect of pre-passivation

    Get PDF
    International audienceElectrochemical polarization measurements were combined with surface analysis by Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS), X-Ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy (AFM) to study the alterations of the passive film on 316L austenitic stainless steel induced by the presence of chlorides in sulfuric acid electrolyte. The work was performed at a stage of initiation of localized corrosion preceding metastable pitting at the micrometer scale as verified by current transient analysis and AFM. The results show that Cl-ions enter the bilayer structure of the surface oxide already formed in the native oxide-covered initial surface state at concentrations below the detection limit of XPS (< 0.5 at%), mostly in the hydroxide outer layer where Fe(III) and Mo(IV,VI) species are concentrated but barely in the oxide inner layer enriched in Cr(III). Their main effect is to produce a less resistive passive state by poisoning dehydroxylation and further Cr(III) and Mo(IV,VI) enrichments obtained in the absence of chlorides. This detrimental effect can be suppressed by pre-passivation in a Cl-free electrolyte, which blocks the entry of chlorides in the passive film, including in the outer exchange layer, and enables the beneficial aging-induced variations of the composition to take place despite the presence of chlorides in the environment

    Passivation-Induced Physicochemical Alterations of the Native Surface Oxide Film on 316L Austenitic Stainless Steel

    Get PDF
    International audienceTime of Flight Secondary Ion Mass Spectroscopy, X-Ray Photoelectron Spectroscopy, in situ Photo-Current Spectroscopy and electrochemical analysis were combined to characterize the physicochemical alterations induced by electrochemical passivation of the surface oxide film providing corrosion resistance to 316L stainless steel. The as-prepared surface is covered by a ∼2 nm thick, mixed (Cr(III)-Fe(III)) and bi-layered hydroxylated oxide. The inner layer is highly enriched in Cr(III) and the outer layer less so. Molybdenum is concentrated, mostly as Mo(VI), in the outer layer. Nickel is only present at trace level. These inner and outer layers have bandgap values of 3.0 and 2.6−2.7 eV, respectively, and the oxide film would behave as an insulator. Electrochemical passivation in sulfuric acid solution causes the preferential dissolution of Fe(III) resulting in the thickness decrease of the outer layer and its increased enrichment in Cr(III) and Mo(IV-VI). The further Cr(III) enrichment of the inner layer causes loss of photoactivity and improved corrosion protection with the anodic shift of the corrosion potential and the increase of the polarization resistance by a factor of ∼4. Aging in the passive state promotes the Cr enrichment in the inner barrier layer of the passive film

    Local Degradation Mechanisms by Tarnishing of Protected Silver Mirror Layers Studied by Combined Surface Analysis

    Get PDF
    International audienceIn this work, we addressed the local degradation mechanisms limiting the pre-launch environmental durability of thin-layered silver stacks for demanding space mirror applications. Local initiation and propagation of tarnishing were studied by combined surface and interface analysis on model stack samples consisting of thin silver layers supported on light-weight SiC substrates and protected by thin SiO2 overcoats, deposited by cathodic magnetron sputtering and submitted to accelerated aging in gaseous H2S. The results show that tarnishing is locally initiated by the formation of Ag2S columns erupting above the stack surface. Ag2S growth is promoted at high aspect ratio defects (surface pores) of the SiC substrate as a result of an imperfect protection by the SiO2 overcoat. Channels most likely connect the silver layer to its environment through the protection layer, which enables local H2S entry and Ag2S growth. The silver sulfide columns grow in number and size eventually leading to coalescence with increasing H2S exposure. In more advanced stages, tarnishing slows down owing to saturation of all pre-existing imperfectly protected sites of preferential sulfidation. However, it progresses radially at the basis of the Ag2S columns underneath the protection layer, consuming the metallic silver layer and deteriorating the protecting overcoat

    Role of SiC substrate surface on local tarnishing of deposited silver mirror stacks

    Get PDF
    International audienceThe role of the SiC substrate surface on the resistance to the local initiation of tarnishing of thin-layered silver stacks for demanding space mirror applications was studied by combined surface and interface analysis on model stack samples deposited by cathodic magnetron sputtering and submitted to accelerated aging in gaseous H2S. It is shown that suppressing the surface pores resulting from the bulk SiC material production process by surface pretreatment eliminates the high aspect ratio surface sites that are imperfectly protected by the SiO2 overcoat after the deposition of silver. The formation of channels connecting the silver layer to its environment through the failing protection layer at the surface pores and locally enabling H2S entry and Ag2S growth as columns until emergence at the stack surface is suppressed, which markedly delays tarnishing initiation and thereby preserves the optical performance. The results revealed that residual tarnishing initiation proceeds by a mechanism essentially identical in nature but involving different pathways short circuiting the protection layer and enabling H2S ingress until the silver layer. These permeation pathways are suggested to be of microstructural origin and could correspond to the incompletely coalesced intergranular boundaries of the SiO2 layer

    Fast electrical modulation of strong near-field interactions between erbium emitters and graphene

    Get PDF
    Combining the quantum optical properties of single-photon emitters with the strong near-field interactions available in nanophotonic and plasmonic systems is a powerful way of creating quantum manipulation and metrological functionalities. The ability to actively and dynamically modulate emitter-environment interactions is of particular interest in this regard. While thermal, mechanical and optical modulation have been demonstrated, electrical modulation has remained an outstanding challenge. Here we realize fast, all-electrical modulation of the near-field interactions between a nanolayer of erbium emitters and graphene, by in-situ tuning the Fermi energy of graphene. We demonstrate strong interactions with a >1000-fold increased decay rate for ~25% of the emitters, and electrically modulate these interactions with frequencies up to 300 kHz - orders of magnitude faster than the emitter's radiative decay (~100 Hz). This constitutes an enabling platform for integrated quantum technologies, opening routes to quantum entanglement generation by collective plasmon emission or photon emission with controlled waveform

    Evaluation and systematic selection of significant multi-scale surface roughness parameters (SRPs) as process monitoring index

    Full text link
    The evaluation of multi-scale surface roughness parameters (SRPs) is important to solve many engineering problems (e.g. contact stress, sealing, friction) and is closely related to further fundamental problems (e.g. microbial contamination). Traditionally, surface roughness has been used as a standard for indicating process performance, such as tool wear, tool vibration etc. This paper also aims to find appropriate surface roughness parameters (SRPs) that can be used as process monitoring indices. Grade 304 stainless steel surfaces, generated by extrusion and grinding processes, were used in this study. The evaluation of different SRPs and their topography properties (such as fractal dimension) is discussed for extruded and ground surfaces. One problem with existing surface metrology is the availability of a multitude of disconnected roughness parameters. A statistical approach is presented in this paper that allows the most appropriate roughness parameters to monitor whether the intended surface quality converges to be found

    Nanometre to Micrometre Length-scale Techniques for Characterising Environmentally-Assisted Cracking - An Appraisal

    Get PDF
    • …
    corecore