13 research outputs found

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    MOESM1 of In vitro oxidative decarboxylation of free fatty acids to terminal alkenes by two new P450 peroxygenases

    No full text
    Additional file 1: Figure S1. Protein sequence alignment of CYP-Aa162 from A. acidocaldarius (GenBank Accession Number: WP_008340313), P450BSβ from Bacillus subtilis str. 168 (GenBank Accession Number: NP_388092), OleTJE from Jeotgalicoccus sp. ATCC 8456 (GenBank Accession Number: ADW41779), CYP-Sm46 (labelled as Sm46 extended) from Staphylococcus massiliensis S46 (GenBank Accession Number: EKU50422), CYP-Sm46Δ29 (labelled as Sm46Δ29) from S. massiliensis (GenBank Accession Number: WP_039990689) and cytochrome P450 enzymes from other Staphylococcus species such as S. agnetis (GenBank Accession Number: KFE42911), S. delphini (GenBank Accession Number: WP_019165531), S. intermedius (GenBank Accession Number: WP_019167377) and S. pseudintermedius HKU10-03 (GenBank Accession Number: ADV05454). Figure S2. SDS-PAGE showing the purified His-tagged CYP-Aa162 (lane A) and CYP-Sm46Δ29 (lane S). Molecular sizes of the marker bands (lane M), from top to bottom, are 180, 135, 100, 75, 63, 48, 35 and 25 kDa respectively. Figure S3. The UV–visible spectra of CYP-Sm46Δ29 (5 μM) under different conditions. (A) The purified CYP-Sm46Δ29 was diluted in 50 mM Na3PO4 (pH 7.4) buffer containing 300 mM NaCl and 10% glycerol. Spectra are shown for the oxidized ferric form of the enzyme (orange line) and the ferrous-CO complex reduced by the indicated amount of Na2S2O4. (B) The purified CYP-Sm46Δ29 was diluted in 50 mM Na3PO4 buffer containing 300 mM NaCl and 10% glycerol with different buffer pH as indicated. Then the absorption spectra were recorded respectively for the oxidized ferric form and the ferrous-CO adduct reduced by 10 mM Na2S2O4. The protein precipitates at buffer pH lower than 7.0. (C) A molar excess (600 μM) of C12 lauric acid was pre-incubated with the enzyme at room temperature for 5 min before the absorption spectra were recorded. Binding of C12 FA did not seem to induce an apparent spin-state transition of the ferric heme. The Soret peak of the C12-bound ferrous-CO adduct of the enzyme was still detected at 420 nm. Figure S4. UV–visible spectra of the self-sufficient monooxygenase P450BM3. The substrate-bound ferric form of P450BM3 (solid line) shows a Soret maximum at ~ 416 nm with undistinguishable β-band and a weaker α-band at 570 nm. The reduced ferrous-CO form of P450BM3 (dashed line) generated by the subsequent NADPH-initiated electron transfer features a shifted Soret peak to 448 nm. Figure S5. Effect of decoupling NADH oxidation and electron transfer on the catalytic conversion of lauric acid (LA) by CYP-Aa162 and CYP-Sm46Δ29. The reactions contained 0.2 mM LA, 2.0 μM CYP-Aa162 (or CYP-Sm46Δ29), 3.0 μM putidaredoxin reductase (PdR), 1 mM NADH in the absence and presence of 1200 U mL−1 catalase (Catl.). By subtracting putidaredoxin (Pdx) from the reaction system, the NADH oxidation was mandatorily decoupled from the Class I electron transfer chain to P450 enzymes. Any catalytic activity observed should be supported by the H2O2 generated from NADH oxidation and O2 reduction. The percentage conversion of LA was determined by calculating the substrate consumption based on GC analysis. Results shown are mean ± SD of duplicated experiments. Figure S6. The ratios of free fatty acid (FFA) decarboxylation (DC) over hydroxylation (HD) by CYP-Sm46Δ29 against different FFA substrates. The decarboxylation activity was measured by detecting the 1-alkene yield using GC analytical method. The hydroxylation activity was estimated by subtracting the alkene production from the total substrate conversion. This indirect but more convenient method was validated with C14 myristic acid substrate by direct measurement of the BSTFA/TMCS derivatized hydroxylation products. Results are shown as mean ± SD of duplicated experiments. Figure S7. Phylogenetic tree for CYP-Aa162, CYP-Sm46Δ29 and other CYP152 family members. The sequences were aligned using ClustalW. The Neighbor-joining Tree was generated using MEGA 7.0 package. Bootstrap values shown next to the branches were computed from 1000 bootstrap tests. CYP-Sm46 was found most closely related to the P450 fatty acid decarboxylase OleTJE (CYP152L1), while CYP-Aa162 (CYP152A8) is much closer to the P450 fatty acid hydroxylase P450BSβ (CYP152A1). Figure S8. Protein sequence alignment of OleTJE, CYP-Sm46Δ29, CYP-Aa162 and P450BSβ. *: the only two residues that are distinct in the active sites of these four P450 peroxygenases, which are proposed to be important for product distribution; #: the key catalytic residue. Figure S9. Kinetic curves of CYP-Aa162 and CYP-Sm46Δ29 against their optimal fatty acid substrates. (A) C12 lauric acid substrate consumption rates by CYP-Aa162 were fitted to Hill equation; (B) 1-undecene formation rates by CYP-Sm46Δ29 were fitted to Hill equation; (C) Solid line: the plot of 1-tridecene formation rates by CYP-Sm46Δ29 as a function of increasing C14 myristic acid concentrations, demonstrating substantial substrate inhibition. Dotted line: a hyperbolic curve fitted with Michaelis–Menten equation after truncating the inhibited rates at high C14 substrate concentrations. The steady state kinetic parameters were calculated using OriginPro 8.0 and are summarized in Table 2

    The bio.tools registry of software tools and data resources for the life sciences

    Get PDF
    Bioinformaticians and biologists rely increasingly upon workflows for the flexible utilization of the many life science tools that are needed to optimally convert data into knowledge. We outline a pan-European enterprise to provide a catalogue (https://bio.tools) of tools and databases that can be used in these workflows. bio.tools not only lists where to find resources, but also provides a wide variety of practical information

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome Associated with COVID-19: An Emulated Target Trial Analysis

    No full text
    International audienc

    Benefits and risks of noninvasive oxygenation strategy in COVID-19: a multicenter, prospective cohort study (COVID-ICU) in 137 hospitals

    No full text
    International audienceAbstract Rational To evaluate the respective impact of standard oxygen, high-flow nasal cannula (HFNC) and noninvasive ventilation (NIV) on oxygenation failure rate and mortality in COVID-19 patients admitted to intensive care units (ICUs). Methods Multicenter, prospective cohort study (COVID-ICU) in 137 hospitals in France, Belgium, and Switzerland. Demographic, clinical, respiratory support, oxygenation failure, and survival data were collected. Oxygenation failure was defined as either intubation or death in the ICU without intubation. Variables independently associated with oxygenation failure and Day-90 mortality were assessed using multivariate logistic regression. Results From February 25 to May 4, 2020, 4754 patients were admitted in ICU. Of these, 1491 patients were not intubated on the day of ICU admission and received standard oxygen therapy (51%), HFNC (38%), or NIV (11%) ( P < 0.001). Oxygenation failure occurred in 739 (50%) patients (678 intubation and 61 death). For standard oxygen, HFNC, and NIV, oxygenation failure rate was 49%, 48%, and 60% ( P < 0.001). By multivariate analysis, HFNC (odds ratio [OR] 0.60, 95% confidence interval [CI] 0.36–0.99, P = 0.013) but not NIV (OR 1.57, 95% CI 0.78–3.21) was associated with a reduction in oxygenation failure). Overall 90-day mortality was 21%. By multivariable analysis, HFNC was not associated with a change in mortality (OR 0.90, 95% CI 0.61–1.33), while NIV was associated with increased mortality (OR 2.75, 95% CI 1.79–4.21, P < 0.001). Conclusion In patients with COVID-19, HFNC was associated with a reduction in oxygenation failure without improvement in 90-day mortality, whereas NIV was associated with a higher mortality in these patients. Randomized controlled trials are needed

    Characteristics, management, and prognosis of elderly patients with COVID-19 admitted in the ICU during the first wave: insights from the COVID-ICU study

    No full text
    International audienceBackground: The COVID-19 pandemic is a heavy burden in terms of health care resources. Future decision-making policies require consistent data on the management and prognosis of the older patients (&gt; 70 years old) with COVID-19 admitted in the intensive care unit (ICU). Methods: Characteristics, management, and prognosis of critically ill old patients (&gt; 70 years) were extracted from the international prospective COVID-ICU database. A propensity score weighted-comparison evaluated the impact of intubation upon admission on Day-90 mortality. Results: The analysis included 1199 (28% of the COVID-ICU cohort) patients (median [interquartile] age 74 [72–78] years). Fifty-three percent, 31%, and 16% were 70–74, 75–79, and over 80 years old, respectively. The most frequent comorbidities were chronic hypertension (62%), diabetes (30%), and chronic respiratory disease (25%). Median Clinical Frailty Scale was 3 (2–3). Upon admission, the PaO2/FiO2 ratio was 154 (105–222). 740 (62%) patients were intubated on Day-1 and eventually 938 (78%) during their ICU stay. Overall Day-90 mortality was 46% and reached 67% among the 193 patients over 80 years old. Mortality was higher in older patients, diabetics, and those with a lower PaO2/FiO2 ratio upon admission, cardiovascular dysfunction, and a shorter time between first symptoms and ICU admission. In propensity analysis, early intubation at ICU admission was associated with a significantly higher Day-90 mortality (42% vs 28%; hazard ratio 1.68; 95% CI 1.24–2.27; p &lt; 0·001). Conclusion: Patients over 70 years old represented more than a quarter of the COVID-19 population admitted in the participating ICUs during the first wave. Day-90 mortality was 46%, with dismal outcomes reported for patients older than 80 years or those intubated upon ICU admission
    corecore