201 research outputs found

    Oscillating airfoils and their wake

    Get PDF
    The unsteady phenomena in the wake of an oscillating wing or rotor blade are examined theoretically using the Prandtl approximation of the vortex-transport equation. A mathematical model is developed and applied to such problems as the effect of winglets on the performance of fixed wings and the possibly of employing similar designs in rotor blades. Model predictions for several profiles are compared with published and experimental measurements, and good agreement is found. Graphs and diagrams are provided

    The Southwest Pacific Ocean circulation and climate experiment (SPICE) : report to CLIVAR SSG

    Get PDF
    The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) is an international research program under the auspices of CLIVAR. The key objectives are to understand the Southwest Pacific Ocean circulation and the South Pacific Convergence Zone (SPCZ) dynamics, as well as their influence on regional and basin-scale climate patterns. South Pacific thermocline waters are transported in the westward flowing South Equatorial Current (SEC) toward Australia and Papua-New Guinea. On its way, the SEC encounters the numerous islands and straits of the Southwest Pacific and forms boundary currents and jets that eventually redistribute water to the equator and high latitudes. The transit in the Coral, Solomon, and Tasman Seas is of great importance to the climate system because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate the El Nino-Southern Oscillation, while the southward transports influence the climate and biodiversity in the Tasman Sea. After 7 years of substantial in situ oceanic observational and modeling efforts, our understanding of the region has much improved. We have a refined description of the SPCZ behavior, boundary currents, pathways, and water mass transformation, including the previously undocumented Solomon Sea. The transports are large and vary substantially in a counter-intuitive way, with asymmetries and gating effects that depend on time scales. This paper provides a review of recent advancements and discusses our current knowledge gaps and important emerging research directions

    An Experimental and Numerical Investigation of Flapping-Wing Propulsion

    Get PDF
    AIAA Paper No. 99-0995, 37th AIAA Aerospace Sciences Meeting, Reno, Nevada, Jan. 1999.Flapping-wing propulsion is investigated experimentally and numerically with direct comparisons between experimental and numerical thrust measurements for several geometrically simple configurations. Numerical simulations are performed using linear theory, and a previously developed, unsteady panel method that models one or two independently moving airfoils with three-degrees of freedom and non-linear deforming wakes. Experiments are carried out in the Naval Postgraduate School 5'×5' low-speed tunnel. A flapping mechanism that approximates the two-dimensional motions modeled by the panel code is suspended with cables in the wind tunnel, and thrust measurements are made by measuring the streamwise displacement of the model using a laser range-finder. The experimental flapping mechanism utilizes variable aspect-ratio wings and optional tip plates to investigate the effect of three-dimensionality. The device flaps two airfoils, each with two degrees of freedom and adjustable pitch and plunge amplitudes, and additional stationary wings may be attached up and/or downstream of the flapping wings to investigate interference effects

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Autonomous Seawater \u3ci\u3ep\u3c/i\u3eCO\u3csub\u3e2\u3c/sub\u3e and pH Time Series From 40 Surface Buoys and the Emergence of Anthropogenic Trends

    Get PDF
    Ship-based time series, some now approaching over 3 decades long, are critical climate records that have dramatically improved our ability to characterize natural and anthropogenic drivers of ocean carbon dioxide (CO2) uptake and biogeochemical processes. Advancements in autonomous marine carbon sensors and technologies over the last 2 decades have led to the expansion of observations at fixed time series sites, thereby improving the capability of characterizing sub-seasonal variability in the ocean. Here , we present a data product of 40 individual autonomous moored surface ocean pCO2 (partial pressure of CO2) time series established between 2004 and 2013, 17 also include autonomous pH measurements. These time series characterie a wide range of surface ocean carbonate conditions in diffferent oceanic (17 sites), coastal (13 sites), and coral reef (10 sites) regimes. A time of trend emergence (ToE) methodology applied ot the time series that exhibit well-constrained daily to interannual variability and an estimate of decadal variability indicates that the length of sustained observations necessary to detect statistically significant anthropogenic trends varies by marine environment. The ToE estisites, and 9 to 22 years at the coral reef sites. Only two open ocean pCO2 and pH range from 8 to 15 years at the open ocean sites, 16 to 41 years at the coastal sites, and 9 to 22 years at the coral reef sites. Only two open ocean pCO2 time series, Woods Hole Oceanographic Institution Hawaii Ocean Time-series Station (WHOTS) in the subtropical North Pacific and Stratus n the South Pacific gyre, have been deployed longer than the estimated trend detection time and, for these, deseasoned monthly means show estimated anthropogenic trends of 1.9 ± 0.3 and 1.6 ± 0.3 μatm yr-1, respectively. In the future, it is possible that updates to this product will allow for the estimation of anthropogenic trends at more sites; however, the product currently provides a valuable tool in an accessible format for evaluating climatology and natural variability of surface ocean carbonate chemistry in a variety of regions. Data are available at https://doi.org/10.7289/V5DB8043 and https://www.nodc.noaa.gov/ocads/oceans/Moorings/ndp097.html (Sutton et al., 2018)

    Uptake and sequestration of atmospheric CO2 in the Labrador Sea deep convection region

    Get PDF
    The Labrador Sea is an important area of deep water formation and is hypothesized to be a significant sink for atmospheric CO2 to the deep ocean. Here we examine the dynamics of the CO2 system in the Labrador Sea using time-series data obtained from instrumentation deployed on a mooring near the former Ocean Weather Station Bravo. A 1-D model is used to determine the air-sea CO2 uptake and penetration of the CO2 into intermediate waters. The results support that mixed-layer pCO2 remained undersaturated throughout most of the year, ranging from 220 μatm in mid-summer to 375 μatm in the late spring. Net community production in the summer offset the increase in pCO2 expected from heating and air-sea uptake. In the fall and winter, cooling counterbalanced a predicted increase in pCO2 from vertical convection and air-sea uptake. The predicted annual mean air to sea flux was 4.6 mol m−2 yr−1 resulting in an annual uptake of 0.011 ± 0.005 Pg C from the atmosphere within the convection region. In 2001, approximately half of the atmospheric CO2 penetrated below 500 m due to deep convection

    ASIRI : an ocean–atmosphere initiative for Bay of Bengal

    Get PDF
    Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 97 (2016): 1859–1884, doi:10.1175/BAMS-D-14-00197.1.Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∼300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.This work was sponsored by the U.S. Office of Naval Research (ONR) in an ONR Departmental Research Initiative (DRI), Air–Sea Interactions in Northern Indian Ocean (ASIRI), and in a Naval Research Laboratory project, Effects of Bay of Bengal Freshwater Flux on Indian Ocean Monsoon (EBOB). ASIRI–RAWI was funded under the NASCar DRI of the ONR. The Indian component of the program, Ocean Mixing and Monsoons (OMM), was supported by the Ministry of Earth Sciences of India.2017-04-2
    corecore