11 research outputs found

    A Low-Diversity Microbiota Inhabits Extreme Terrestrial Basaltic Terrains and Their Fumaroles : Implications for the Exploration of Mars

    Get PDF
    A major objective in the exploration of Mars is to test the hypothesis that the planet hosted life. Even in the absence of life, the mapping of habitable and uninhabitable environments is an essential task in developing a complete understanding of the geological and aqueous history of Mars and, as a consequence, understanding what factors caused Earth to take a different trajectory of biological potential. We carried out the aseptic collection of samples and comparison of the bacterial and archaeal communities associated with basaltic fumaroles and rocks of varying weathering states in Hawai'i to test four hypotheses concerning the diversity of life in these environments. Using high-throughput sequencing, we found that all these materials are inhabited by a low-diversity biota. Multivariate analyses of bacterial community data showed a clear separation between sites that have active fumaroles and other sites that comprised relict fumaroles, unaltered, and syn-emplacement basalts. Contrary to our hypothesis that high water flow environments, such as fumaroles with active mineral leaching, would be sites of high biological diversity, alpha diversity was lower in active fumaroles compared to relict or nonfumarolic sites, potentially due to high-temperature constraints on microbial diversity in fumarolic sites. A comparison of these data with communities inhabiting unaltered and weathered basaltic rocks in Idaho suggests that bacterial taxon composition of basaltic materials varies between sites, although the archaeal communities were similar in Hawai'i and Idaho. The taxa present in both sites suggest that most of them obtain organic carbon compounds from the atmosphere and from phototrophs and that some of them, including archaeal taxa, cycle fixed nitrogen. The low diversity shows that, on Earth, extreme basaltic terrains are environments on the edge of sustaining life with implications for the biological potential of similar environments on Mars and their exploration by robots and humans.Peer reviewe

    Textural and rheological evolution of basalt flowing down a lava channel

    No full text
    International audienceThe Muliwai a Pele lava channel was emplaced during the final stage of Mauna Ulu’s 1969–1974 eruption (Kilauea, Hawaii). The event was fountain-fed and lasted for around 50 h, during which time a channelized flow system developed, in which a 6-km channel fed a zone of dispersed flow that extended a further 2.6 km. The channel was surrounded by initial rubble levees of ’a’a, capped by overflow units of limited extent. We sampled the uppermost overflow unit every 250 m down the entire channel length, collecting, and analyzing 27 air-quenched samples. Bulk chemistry, density and textural analyses were carried out on the sample interior, and glass chemistry and microlite crystallization analyses were completed on the quenched crust. Thermal and rheological parameters (cooling, crystallization rate, viscosity, and yield strength) were also calculated. Results show that all parameters experience a change around 4.5 km from the vent. At this point, there is a lava surface transition from pahoehoe to ’a’a. Lava density, microlite content, viscosity, and yield strength all increase down channel, but vesicle content and lava temperature decrease. Cooling rates were 6.7 °C/km, with crystallization rates increasing from 0.03 Ѐc/km proximally, to 0.14 Ѐc/km distally. Modeling of the channel was carried out using the FLOWGO thermo-rheological model and allowed fits for temperature, microlite content, and channel width when run using a three-phase viscosity model based on a temperature-dependent viscosity relation derived for this lava. The down flow velocity profile suggests an initial velocity of 27 m/s, declining to 1 m/s at the end of the channel. Down-channel, lava underwent cooling that induced crystallization, causing both the lava viscosity and yield strength to increase. Moreover, lava underwent degassing and a subsequent vesicularity decrease. This aided in increasing viscosity, with the subsequent increase in shearing promoting a transition to ’a’a

    Pahoehoe to `a`a transition of Hawaiian lavas: an experimental study

    No full text
    International audienceBasaltic lavas collected at the Muliwai a Pele lava channel, built during 1974 as part of Mauna Ulu’s eruption on Kilauea’s east rift zone, have been studied to investigate the effect of cooling and crystallization on the rheological properties of the lava. We have quantified the viscosity-strain-rate dependence of lava during cooling and crystallization, using concentric cylinder viscometry. We measured the viscosity of the crystal-free liquid between 1600 and 1230 °C, where we observed a deviation from the expected viscosity trend, marking the liquidus. We then made rheology measurements at subliquidus temperatures of 1207, 1203, 1183, 1176, and 1169 °C, varying the applied strain rates at each temperature. While the crystal-free liquid behaved as a Newtonian fluid, crystallization changed the rheological response to pseudo-plastic behavior, even at the lowest crystal volume fraction of 0.025. Pseudo-plastic behavior was observed down to a temperature of 1183 °C, with a crystal fraction of 0.15. Between 1183 and 1176 °C, the two-phase suspension transitioned from a power-law fluid to a Herschel-Bulkley fluid. At temperatures of 1176 and 1169 °C, with crystal fractions of 0.33 and 0.42, respectively, we observed lobate surface textures on the experimental samples, which remained preserved until the end of the experiments. Measurements at these temperatures indicated yield strengths of 82 ± 16 and 238 ± 18 Pa, respectively. The yield strength resulted from the development of an interconnected crystal network of diopside and enstatite by 1176 °C. By 1169 °C, diopside and plagioclase microcrystals had also appeared, and the effective viscosity was between 2000 and 5000 Pa s, depending on the strain rate. Further cooling to 1164 °C resulted in a rapid viscosity increase, to an effective viscosity in excess of 105 Pa s that exceeded the measurement range of our apparatus. The yield strength varies with crystallinity in an exponential fashion, with yield strength in Pa given by σ y = 1.25e12.93Ί c, where Ί c is the crystal volume fraction. The physical effect of crystals on the relative viscosity of magma was assessed by removing the effects of changing residual liquid viscosity, due to changing composition and temperature. To do this, we analyzed, synthesized, and measured the most evolved residual liquid from the subliquidus experiments. The effect of crystals was best captured by the Einstein-Roscoe equation for polydisperse spherical inclusions. We also measured the viscosity of the same crystal-liquid mixtures at low temperatures and strain rates using parallel-plate viscometry. The effect of crystals on magma viscosity was slightly greater at low strain rates, in agreement with theoretical models, although no single model reproduced these results well. In our experiments, the transition from pahoehoe to `a`a occurred between 1200 and 1170 °C, at viscosities between 100 and 1000 Pa s, depending on strain rate

    The impact and recovery of asteroid 2018 LA

    Get PDF
    International audienceThe June 2, 2018 impact of asteroid 2018 LA over Botswana is only the second asteroid detected in space prior to impacting over land. Here, we report on the successful recovery of meteorites. Additional astrometric data refine the approach orbit and define the spin period and shape of the asteroid. Video observations of the fireball constrain the asteroid's position in its orbit and were used to triangulate the location of the fireball's main flare over the Central Kalahari Game Reserve. Twenty three meteorites were recovered. A consortium study of eight of these classifies Motopi Pan as an HED polymict breccia derived from howardite, cumulate and basaltic eucrite, and diogenite lithologies. Before impact, 2018 LA was a solid rock of ~156 cm diameter with high bulk density ~2.85 g cm−3, a relatively low albedo pV ~ 0.25, no significant opposition effect on the asteroid brightness, and an impact kinetic energy of ~0.2 kt. The orbit of 2018 LA is consistent with an origin at Vesta (or its Vestoids) and delivery into an Earth impacting orbit via the Îœ6 resonance. The impact that ejected 2018 LA in an orbit toward Earth occurred 22.8 ± 3.8 Ma ago. Zircons record a concordant U Pb age of 4563 ± 11 Ma and a consistent 207Pb/206Pb age of 4563 ± 6 Ma. A much younger Pb Pb phosphate resetting age of 4234 ± 41 Ma was found. From this impact chronology, we discuss what is the possible source crater of Motopi Pan and the age of Vesta's Veneneia impact basin
    corecore