169 research outputs found
Social diversity favors the emergence of cooperative behavior
Throughout their life, humans often engage in public goods games in situations ranging from family related issues to global warming. In all cases, the tragedy of the commons threatens the possibility of reaching the optimal solution associated with global cooperation. Up to now, individuals have been treated as equivalent in all respects, in sharp contrast with real life situations, where diversity abounds. Here we discuss the results reported in [Santos et al. Nature (2008) 454:213-6], where we show how social diversity provides an escape from this paradox. We investigate the impact of social diversity in the evolution of cooperation in complex networks of interaction. We show that the diversity in the number and size of the collective endeavors each individual participates and with the individual contribution to each investment promotes cooperation. The enhancement of cooperation is particularly strong when both wealth and social ties follow a power-law distribution, providing clues on the self-organization of social communities.SCOPUS: cp.pinfo:eu-repo/semantics/publishe
Self-organization of punishment in structured populations
Cooperation is crucial for the remarkable evolutionary success of the human
species. Not surprisingly, some individuals are willing to bare additional
costs in order to punish defectors. Current models assume that, once set, the
fine and cost of punishment do not change over time. Here we show that relaxing
this assumption by allowing players to adapt their sanctioning efforts in
dependence on the success of cooperation can explain both, the spontaneous
emergence of punishment, as well as its ability to deter defectors and those
unwilling to punish them with globally negligible investments. By means of
phase diagrams and the analysis of emerging spatial patterns, we demonstrate
that adaptive punishment promotes public cooperation either through the
invigoration of spatial reciprocity, the prevention of the emergence of cyclic
dominance, or through the provision of competitive advantages to those that
sanction antisocial behavior. Presented results indicate that the process of
self-organization significantly elevates the effectiveness of punishment, and
they reveal new mechanisms by means of which this fascinating and widespread
social behavior could have evolved.Comment: 13 pages, 4 figures; accepted for publication in New Journal of
Physic
Evolutionary advantages of adaptive rewarding
Our wellbeing depends as much on our personal success, as it does on the
success of our society. The realization of this fact makes cooperation a very
much needed trait. Experiments have shown that rewards can elevate our
readiness to cooperate, but since giving a reward inevitably entails paying a
cost for it, the emergence and stability of such behavior remain elusive. Here
we show that allowing for the act of rewarding to self-organize in dependence
on the success of cooperation creates several evolutionary advantages that
instill new ways through which collaborative efforts are promoted. Ranging from
indirect territorial battle to the spontaneous emergence and destruction of
coexistence, phase diagrams and the underlying spatial patterns reveal
fascinatingly reach social dynamics that explains why this costly behavior has
evolved and persevered. Comparisons with adaptive punishment, however, uncover
an Achilles heel of adaptive rewarding that is due to over-aggression, which in
turn hinders optimal utilization of network reciprocity. This may explain why,
despite of its success, rewarding is not as firmly weaved into our societal
organization as punishment.Comment: 14 pages, 8 figures; accepted for publication in New Journal of
Physic
Mutual Trust and Cooperation in the Evolutionary Hawks-Doves Game
Using a new dynamical network model of society in which pairwise interactions
are weighted according to mutual satisfaction, we show that cooperation is the
norm in the Hawks-Doves game when individuals are allowed to break ties with
undesirable neighbors and to make new acquaintances in their extended
neighborhood. Moreover, cooperation is robust with respect to rather strong
strategy perturbations. We also discuss the empirical structure of the emerging
networks, and the reasons that allow cooperators to thrive in the population.
Given the metaphorical importance of this game for social interaction, this is
an encouraging positive result as standard theory for large mixing populations
prescribes that a certain fraction of defectors must always exist at
equilibrium.Comment: 23 pages 12 images, to appea
Effects of dimers on cooperation in the spatial prisoner's dilemma game
We investigate the evolutionary prisoner's dilemma game in structured
populations by introducing dimers, which are defined as that two players in
each dimer always hold a same strategy. We find that influences of dimers on
cooperation depend on the type of dimers and the population structure. For
those dimers in which players interact with each other, the cooperation level
increases with the number of dimers though the cooperation improvement level
depends on the type of network structures. On the other hand, the dimers, in
which there are not mutual interactions, will not do any good to the
cooperation level in a single community, but interestingly, will improve the
cooperation level in a population with two communities. We explore the
relationship between dimers and self-interactions and find that the effects of
dimers are similar to that of self-interactions. Also, we find that the dimers,
which are established over two communities in a multi-community network, act as
one type of interaction through which information between communities is
communicated by the requirement that two players in a dimer hold a same
strategy.Comment: 12 pages and 3 figure
Coevolutionary games - a mini review
Prevalence of cooperation within groups of selfish individuals is puzzling in
that it contradicts with the basic premise of natural selection. Favoring
players with higher fitness, the latter is key for understanding the challenges
faced by cooperators when competing with defectors. Evolutionary game theory
provides a competent theoretical framework for addressing the subtleties of
cooperation in such situations, which are known as social dilemmas. Recent
advances point towards the fact that the evolution of strategies alone may be
insufficient to fully exploit the benefits offered by cooperative behavior.
Indeed, while spatial structure and heterogeneity, for example, have been
recognized as potent promoters of cooperation, coevolutionary rules can extend
the potentials of such entities further, and even more importantly, lead to the
understanding of their emergence. The introduction of coevolutionary rules to
evolutionary games implies, that besides the evolution of strategies, another
property may simultaneously be subject to evolution as well. Coevolutionary
rules may affect the interaction network, the reproduction capability of
players, their reputation, mobility or age. Here we review recent works on
evolutionary games incorporating coevolutionary rules, as well as give a
didactic description of potential pitfalls and misconceptions associated with
the subject. In addition, we briefly outline directions for future research
that we feel are promising, thereby particularly focusing on dynamical effects
of coevolutionary rules on the evolution of cooperation, which are still widely
open to research and thus hold promise of exciting new discoveries.Comment: 24 two-column pages, 10 figures; accepted for publication in
BioSystem
Evolution of Cooperation among Mobile Agents
We study the effects of mobility on the evolution of cooperation among mobile
players, which imitate collective motion of biological flocks and interact with
neighbors within a prescribed radius . Adopting the prisoner's dilemma game
and the snowdrift game as metaphors, we find that cooperation can be maintained
and even enhanced for low velocities and small payoff parameters, when compared
with the case that all agents do not move. But such enhancement of cooperation
is largely determined by the value of , and for modest values of , there
is an optimal value of velocity to induce the maximum cooperation level.
Besides, we find that intermediate values of or initial population
densities are most favorable for cooperation, when the velocity is fixed.
Depending on the payoff parameters, the system can reach an absorbing state of
cooperation when the snowdrift game is played. Our findings may help
understanding the relations between individual mobility and cooperative
behavior in social systems.Comment: 15 pages, 5 figure
Different reactions to adverse neighborhoods in games of cooperation
In social dilemmas, cooperation among randomly interacting individuals is
often difficult to achieve. The situation changes if interactions take place in
a network where the network structure jointly evolves with the behavioral
strategies of the interacting individuals. In particular, cooperation can be
stabilized if individuals tend to cut interaction links when facing adverse
neighborhoods. Here we consider two different types of reaction to adverse
neighborhoods, and all possible mixtures between these reactions. When faced
with a gloomy outlook, players can either choose to cut and rewire some of
their links to other individuals, or they can migrate to another location and
establish new links in the new local neighborhood. We find that in general
local rewiring is more favorable for the evolution of cooperation than
emigration from adverse neighborhoods. Rewiring helps to maintain the diversity
in the degree distribution of players and favors the spontaneous emergence of
cooperative clusters. Both properties are known to favor the evolution of
cooperation on networks. Interestingly, a mixture of migration and rewiring is
even more favorable for the evolution of cooperation than rewiring on its own.
While most models only consider a single type of reaction to adverse
neighborhoods, the coexistence of several such reactions may actually be an
optimal setting for the evolution of cooperation.Comment: 12 pages, 5 figures; accepted for publication in PLoS ON
Resolution of the stochastic strategy spatial prisoner's dilemma by means of particle swarm optimization
We study the evolution of cooperation among selfish individuals in the
stochastic strategy spatial prisoner's dilemma game. We equip players with the
particle swarm optimization technique, and find that it may lead to highly
cooperative states even if the temptations to defect are strong. The concept of
particle swarm optimization was originally introduced within a simple model of
social dynamics that can describe the formation of a swarm, i.e., analogous to
a swarm of bees searching for a food source. Essentially, particle swarm
optimization foresees changes in the velocity profile of each player, such that
the best locations are targeted and eventually occupied. In our case, each
player keeps track of the highest payoff attained within a local topological
neighborhood and its individual highest payoff. Thus, players make use of their
own memory that keeps score of the most profitable strategy in previous
actions, as well as use of the knowledge gained by the swarm as a whole, to
find the best available strategy for themselves and the society. Following
extensive simulations of this setup, we find a significant increase in the
level of cooperation for a wide range of parameters, and also a full resolution
of the prisoner's dilemma. We also demonstrate extreme efficiency of the
optimization algorithm when dealing with environments that strongly favor the
proliferation of defection, which in turn suggests that swarming could be an
important phenomenon by means of which cooperation can be sustained even under
highly unfavorable conditions. We thus present an alternative way of
understanding the evolution of cooperative behavior and its ubiquitous presence
in nature, and we hope that this study will be inspirational for future efforts
aimed in this direction.Comment: 12 pages, 4 figures; accepted for publication in PLoS ON
Effectiveness of conditional punishment for the evolution of public cooperation
Collective actions, from city marathons to labor strikes, are often mass-driven and subject to the snowball effect. Motivated by this, we study evolutionary advantages of conditional punishment in the spatial public goods game. Unlike unconditional punishers who always impose the same fines on defectors, conditional punishers do so proportionally with the number of other punishers in the group. Phase diagrams in dependence on the punishment fine and cost reveal that the two types of punishers cannot coexist. Spontaneous coarsening of the two strategies leads to an indirect territorial competition with the defectors, which is won by unconditional punishers only if the sanctioning is inexpensive. Otherwise conditional punishers are the victors of the indirect competition, indicating that under more realistic conditions they are indeed the more effective strategy. Both continuous and discontinuous phase transitions as well as tricritical points characterize the complex evolutionary dynamics, which is due to multipoint interactions that are introduced by conditional punishment. We propose indirect territorial competition as a generally applicable mechanism relying on pattern formation, by means of which spatial structure can be utilized by seemingly subordinate strategies to avoid evolutionary extinction
- …
