9 research outputs found

    Simulative Untersuchung des multiphysikalischen Verhaltens von Lithium-Ionen Zellen

    Get PDF
    Das Leistungs- und Alterungsverhalten von Lithium-Ionen Batterien (LIB) – aktuell die etablierteste Speichertechnologie der E-Mobilität – ist für die Faktoren Reichweite, Ladezeiten sowie Lebensdauer in Elektrofahrzeugen von zentraler Bedeutung. Das Verhalten der LIB wird dabei maßgeblich durch die Prozesse innerhalb ihrer Mikrostrukturebene bestimmt. Lokalisierte Belastungen und inhomogene Verteilungen in der Mikrostruktur der porösen Elektroden können das Leistungsverhalten mindern und sind vor allem mit Blick auf die Degradationsprozesse besonders kritisch. In dieser Arbeit werden mit Hilfe eines heterogen aufgelösten Mikrostrukturmodells die lokalen Prozesse und Inhomogenitäten in Graphit-Anoden sowie deren Dynamik systematisch simulativ analysiert und die zugrundeliegenden Zusammenhänge dargelegt. Die Untersuchung erfolgt hierbei in einer Vollzell-Konfiguration mit einer Interkalations-Gegenelektrode, um die Prozesse der Anode unter den Bedingungen wie im realen Einsatzfall zu untersuchen. Der Einfluss der Temperatur auf die Prozesse in LIB wird durch die Kopplung mit einem thermischen Modellteil erfasst und ist Fokus ergänzender Studien. Das entwickelte numerische Simulationsmodell zur Untersuchung der multiphysikalischen Transport- und Reaktionsprozesse in generischen Elektrodenstrukturen wird gegen einen etablierten Simulationsansatz aus der Literatur physikalisch plausibilisiert und verifiziert. Durch einen experimentellen Validierungsvergleich anhand des Spannungsverhaltens einer kommerziellen Zelle wird das Simulationsmodell abschließend überprüft. Für den Schwerpunkt der simulativen Untersuchungen konnten mit Hilfe des Simulationsmodells die, in der Literatur experimentell aufgezeigte, dynamische inhomogene Verteilung der lokalen Strombelastung über die Schichtdicke belegt und die zugrundeliegenden Wechselwirkungen analysiert werden. Als zentrale Einflussgröße konnte die ladezustandsabhängige Gleichgewichtsspannung des Graphits und die Auswirkung ihres charakteristischen Verlaufs nachgewiesen werden. Die in der Literatur anhand von Untersuchungen parallel verschalteter Zellen beschriebene ausgleichende Wirkung der Gleichgewichtsspannung infolge inhomogener Ladezustandsverteilungen, konnte ebenfalls durch die simulativen Untersuchungen dieser Arbeit für die Prozesse innerhalb der Anodenstruktur aufgezeigt werden. Durch ein systematisches Vorgehen zur Erfassung des individuellen Einflusses der verschiedenen Mikrostrukturparameter, anstelle der häufig in der Literatur betrachteten kombinierten Wirkung mehrerer Parameter auf einmal, konnte der Einfluss von vertikaler Position, von Partikelform, von Partikelgröße sowie einer Gradierung der Partikelgrößen über die Schichtdicke auf die lokalen Prozesse untersucht werden. Ergänzend wurde auch der Einfluss der Temperatur auf die lokalen Prozesse und das Leistungsverhalten der LIB systematisch untersucht. Hieraus konnte die Bedeutung der gekoppelten Betrachtung des thermischen Verhaltens für fundierte Untersuchungen der Prozesse auch in der Mikrostrukturebene belegt werden. Anhand der gewonnenen Einblicke und Ergebnisse wurde ein Beitrag zum fundierten Verständnis der lokalen Prozesse und Inhomogenitäten sowie den zugrundeliegenden Wechselwirkungen in Graphit-Anoden geleistet. Auf Basis dieser können kritische, lokale Belastungskonfigurationen untersucht sowie aufbauend darauf Optimierungsstrategien der Mikrostruktur bezüglich des Leistungs- und Alterungsverhaltens in nachfolgenden Arbeiten entwickelt werden

    Modeling the Thermal Conductivity of Porous Electrodes of Li-Ion Batteries as a Function of Microstructure Parameters

    Get PDF
    The performance and lifetime of lithium‐ion batteries are strongly influenced by the temperature distribution within the cells, as electrochemical reactions, transport properties, and aging effects are temperature dependent. However, thermal analysis and numerical simulation of the temperature inside the cells can only be as accurate as the underlying data on thermal transport properties. This contribution presents a numerical and analytical model for predicting the thermal conductivity of porous electrodes as a function of microstructure parameters. Both models account for the morphology of the electrode structures and bulk material properties of the constitutive components. Structural parameters considered in both models alike are the porosity of the electrode coatings, particle size distribution, particle shape, particle contact areas, and binder carbon black distribution. The numerical model is based on the well‐established finite volume discretization, allowing for detailed 3D analyses. The analytical model is an extension of the well‐known Zehner–Bauer–Schluender approach for solid packing and provides fast predictions of the effects of parameter variations. The results of both models have been successfully verified against each other and compared to literature data and experimental measurements

    Investigation of Transverse Relaxation Rate Distribution via Magnetic Resonance Imaging: Impact of Electrode Formation

    Get PDF
    The impact of electrode formation is studied by the spatially and time‐resolved distribution of transverse relaxation. In situ 7^{7}Li nuclear magnetic resonance experiments are performed on an experimental lithium‐ion battery cell to study the impact of electrode passivation via imaging and transverse relaxation in the interelectrode volume. The electrolyte in the battery, using technically relevant electrode material, i.e., graphite and lithium–nickel–cobalt–manganese–oxide, is studied by 2D magnetic resonance imaging. The electrolyte is 1 mol L1^{-1} lithium hexafluorophosphate dissolved in a binary mixture of ethylene carbonate and dimethyl carbonate. 1D profiles are acquired and related to 7^{7}Li concentration during passivation and during a constant current/constant voltage cycle. The transverse relaxation rate R2_{2}(z,t) measured by multiecho profiles revealed changes within the electrolyte volume. The ongoing process changes the relaxation distribution. Indications for a defective electrode passivation are deduced from the data. During one charging cycle with constant current/constant voltage, the lithium concentration is measured spatially resolved, and the data are modeled by the Nernst–Planck equation

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Investigation of the Effective Thermal Conductivity of Cell Stacks of Li‐Ion Batteries

    Get PDF
    Knowledge of the thermal transport properties of the individual battery components and their combination is required for the design of thermally optimized lithium‐ion batteries. Based on this, the limiting components can be identified and potentially improved. In this contribution, the microstructures of commercial porous electrode coatings, electrode stacks, and cell stacks are reconstructed based on experimentally determined structure parameters using a specifically developed structure generation routine. The effective thermal conductivity of the generated stacked structures is then determined by a numerical tool developed in‐house based on the finite‐volume method. The results are compared with an analytical model for fast accurate predictions which takes the morphological parameter sets and the geometry of the stacks into account. Both models are used to identify the system‐limiting components via selected simulation studies. Finally, the results of both models are compared with experimental data for commercial electrode stacks and common literature values for cell stacks

    Investigation of Transverse Relaxation Rate Distribution via Magnetic Resonance Imaging: Impact of Electrode Formation

    No full text
    The impact of electrode formation is studied by the spatially and time‐resolved distribution of transverse relaxation. In situ 7^{7}Li nuclear magnetic resonance experiments are performed on an experimental lithium‐ion battery cell to study the impact of electrode passivation via imaging and transverse relaxation in the interelectrode volume. The electrolyte in the battery, using technically relevant electrode material, i.e., graphite and lithium–nickel–cobalt–manganese–oxide, is studied by 2D magnetic resonance imaging. The electrolyte is 1 mol L1^{-1} lithium hexafluorophosphate dissolved in a binary mixture of ethylene carbonate and dimethyl carbonate. 1D profiles are acquired and related to 7^{7}Li concentration during passivation and during a constant current/constant voltage cycle. The transverse relaxation rate R2_{2}(z,t) measured by multiecho profiles revealed changes within the electrolyte volume. The ongoing process changes the relaxation distribution. Indications for a defective electrode passivation are deduced from the data. During one charging cycle with constant current/constant voltage, the lithium concentration is measured spatially resolved, and the data are modeled by the Nernst–Planck equation

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population.The aim of this study was to inform vaccination prioritization by modelling the impact of vaccination on elective inpatient surgery. The study found that patients aged at least 70 years needing elective surgery should be prioritized alongside other high-risk groups during early vaccination programmes. Once vaccines are rolled out to younger populations, prioritizing surgical patients is advantageous
    corecore