99 research outputs found

    Confirmatory Legislative History

    Full text link

    The geographical distribution and burden of trachoma in Africa.

    Get PDF
    BACKGROUND: There remains a lack of epidemiological data on the geographical distribution of trachoma to support global mapping and scale up of interventions for the elimination of trachoma. The Global Atlas of Trachoma (GAT) was launched in 2011 to address these needs and provide standardised, updated and accessible maps. This paper uses data included in the GAT to describe the geographical distribution and burden of trachoma in Africa. METHODS: Data assembly used structured searches of published and unpublished literature to identify cross-sectional epidemiological data on the burden of trachoma since 1980. Survey data were abstracted into a standardised database and mapped using geographical information systems (GIS) software. The characteristics of all surveys were summarized by country according to data source, time period, and survey methodology. Estimates of the current population at risk were calculated for each country and stratified by endemicity class. RESULTS: At the time of writing, 1342 records are included in the database representing surveys conducted between 1985 and 2012. These data were provided by direct contact with national control programmes and academic researchers (67%), peer-reviewed publications (17%) and unpublished reports or theses (16%). Prevalence data on active trachoma are available in 29 of the 33 countries in Africa classified as endemic for trachoma, and 1095 (20.6%) districts have representative data collected through population-based prevalence surveys. The highest prevalence of active trachoma and trichiasis remains in the Sahel area of West Africa and Savannah areas of East and Central Africa and an estimated 129.4 million people live in areas of Africa confirmed to be trachoma endemic. CONCLUSION: The Global Atlas of Trachoma provides the most contemporary and comprehensive summary of the burden of trachoma within Africa. The GAT highlights where future mapping is required and provides an important planning tool for scale-up and surveillance of trachoma control

    Conformational changes in α7 acetylcholine receptors underlying allosteric modulation by divalent cations

    Get PDF
    Allosteric modulation of membrane receptors is a widespread mechanism by which endogenous and exogenous agents regulate receptor function. For example, several members of the nicotinic receptor family are modulated by physiological concentrations of extracellular calcium ions. In this paper, we examined conformational changes underlying this modulation and compare these with changes evoked by ACh. Two sets of residues in the α7 acetylcholine receptor extracellular domain were mutated to cysteine and analyzed by measuring the rates of modification by the thiol-specific reagent 2-aminoethylmethane thiosulfonate. Using Ba2+ as a surrogate for Ca2+, we found a divalent-dependent decrease the modification rates of cysteine substitutions at M37 and M40, residues at which rates were also slowed by ACh. In contrast, Ba2+ had no significant effect at N52C, a residue where ACh increased the rate of modification. Thus divalent modulators cause some but not all of the conformational effects elicited by agonist. Cysteine substitution of either of two glutamates (E44 or E172), thought to participate in the divalent cation binding site, caused a loss of allosteric modulation, yet Ba2+ still had a significant effect on modification rates of these residues. In addition, the effect of Ba2+ at these residues did not appear to be due to direct occlusion. Our data demonstrate that modulation by divalent cations involves substantial conformational changes in the receptor extracellular domain. Our evidence also suggests the modulation occurs via a binding site distinct from one which includes either (or both) of the conserved glutamates at E44 or E172

    Community Risk Factors for Ocular Chlamydia Infection in Niger: Pre-Treatment Results from a Cluster-Randomized Trachoma Trial

    Get PDF
    Trachoma is one of the most important neglected tropical diseases because it is the leading cause of blindness from an infection in the world. There are about 1.3 million persons blind from the disease and many more at risk of blindness in the future. It is caused by the common bacterium Chlamydia trachomatis and can be treated with mass drug administrations (MDA) of azithromycin. We have begun a clinical trial in Niger, a country with limited resources in Africa, to determine the best treatment strategy. Our study from May to July 2010, which began before MDA's were given, showed that 26% of children aged 0–5 years were infected with the disease. In these children, we found that discharge from the nose, presence of flies on the face, and the number of years of education completed by the head of the household were risk factors for infection in 48 different communities. We hope to use this information about risk factors of infection to help guide future studies for trachoma and also to help with the WHO goal of eliminating the disease worldwide by the year 2020

    Low Prevalence of Conjunctival Infection with Chlamydia trachomatis in a Treatment-Naïve Trachoma-Endemic Region of the Solomon Islands

    Get PDF
    Trachoma is endemic in several Pacific Island states. Recent surveys across the Solomon Islands indicated that whilst trachomatous inflammation-follicular (TF) was present at levels warranting intervention, the prevalence of trachomatous trichiasis (TT) was low. We set out to determine the relationship between chlamydial infection and trachoma in this population. We conducted a population-based trachoma prevalence survey of 3674 individuals from two Solomon Islands provinces. Participants were examined for clinical signs of trachoma. Conjunctival swabs were collected from all children aged 1-9 years. We tested swabs for Chlamydia trachomatis (Ct) DNA using droplet digital PCR. Chlamydial DNA from positive swabs was enriched and sequenced for use in phylogenetic analysis. We observed a moderate prevalence of TF in children aged 1-9 years (n = 296/1135, 26.1%) but low prevalence of trachomatous inflammation-intense (TI) (n = 2/1135, 0.2%) and current Ct infection (n = 13/1002, 1.3%) in children aged 1-9 years, and TT in those aged 15+ years (n = 2/2061, 0.1%). Ten of 13 (76.9%) cases of infection were in persons with TF or TI (p = 0.0005). Sequence analysis of the Ct-positive samples yielded 5/13 (38%) complete (>95% coverage of reference) genome sequences, and 8/13 complete plasmid sequences. Complete sequences all aligned most closely to ocular serovar reference strains. The low prevalence of TT, TI and Ct infection that we observed are incongruent with the high proportion of children exhibiting signs of TF. TF is present at levels that apparently warrant intervention, but the scarcity of other signs of trachoma indicates the phenotype is mild and may not pose a significant public health threat. Our data suggest that, whilst conjunctival Ct infection appears to be present in the region, it is present at levels that are unlikely to be the dominant driving force for TF in the population. This could be one reason for the low prevalence of TT observed during the study

    Invited Review: Decoding the pathophysiological mechanisms that underlie RNA dysregulation in neurodegenerative disorders: a review of the current state of the art

    Get PDF
    Altered RNA metabolism is a key pathophysiological component causing several neurodegenerative diseases. Genetic mutations causing neurodegeneration occur in coding and noncoding regions of seemingly unrelated genes whose products do not always contribute to the gene expression process. Several pathogenic mechanisms may coexist within a single neuronal cell, including RNA/protein toxic gain-of-function and/or protein loss-of-function. Genetic mutations that cause neurodegenerative disorders disrupt healthy gene expression at diverse levels, from chromatin remodelling, transcription, splicing, through to axonal transport and repeat-associated non-ATG (RAN) translation. We address neurodegeneration in repeat expansion disorders [Huntington's disease, spinocerebellar ataxias, C9ORF72-related amyotrophic lateral sclerosis (ALS)] and in diseases caused by deletions or point mutations (spinal muscular atrophy, most subtypes of familial ALS). Some neurodegenerative disorders exhibit broad dysregulation of gene expression with the synthesis of hundreds to thousands of abnormal messenger RNA (mRNA) molecules. However, the number and identity of aberrant mRNAs that are translated into proteins – and how these lead to neurodegeneration – remain unknown. The field of RNA biology research faces the challenge of identifying pathophysiological events of dysregulated gene expression. In conclusion, we discuss current research limitations and future directions to improve our characterization of pathological mechanisms that trigger disease onset and progression

    The Influence of Law and Economics Scholarship on Contract Law: Impressions Twenty-Five Years Later

    Full text link
    corecore