18 research outputs found

    Structural elements of coordination mechanisms in collaborative planning processes and their assessment through maturity models: Application to a ceramic tile company

    Full text link
    Maturity is defined as a measure to evaluate the capabilities of an organization in regards to a certain discipline. The Collaborative Planning Process is a very complex process and Coordination mechanisms are especially relevant in this field to align the plans of the supply chain members. The objective of this paper is to develop a maturity model and a methodology to perform assessment for the Structural Elements of Coordination Mechanisms in the Collaborative Planning Process. Structural elements are specified in order to characterize coordination mechanisms in a collaborative planning context and they have been defined as key areas to be assessed by the maturity model. The identified structural elements are: number of decision-makers, collaboration level, interdependence relationships nature, interdepen-dence relationships type, number of coordination mechanisms, information exchanged, information processing, decision sequence characteristics and stopping criteria. Structural elements are assessed using the scheme of five levels: Initial, Repeatable, Defined, Managed and Optimized. This proposal has been applied to a ceramic tile company and the results are also reported.Cuenca, L.; Boza Garcia, A.; Alemany Díaz, MDM.; Trienekens, JJ. (2013). Structural elements of coordination mechanisms in collaborative planning processes and their assessment through maturity models: Application to a ceramic tile company. Computers in Industry. 64(8):898-911. doi:10.1016/j.compind.2013.06.019S89891164

    Past 140-year environmental record in the northern South China Sea: Evidence from coral skeletal trace metal variations

    Get PDF
    About 140-year changes in the trace metals in Porites coral samples from two locations in the northern South China Sea were investigated. Results of PCA analyses suggest that near the coast, terrestrial input impacted behavior of trace metals by 28.4%, impact of Sea Surface Temperature (SST) was 19.0%, contribution of war and infrastructure were 14.4% and 15.6% respectively. But for a location in the open sea, contribution of War and SST reached 33.2% and 16.5%, while activities of infrastructure and guano exploration reached 13.2% and 14.7%. While the spatiotemporal change model of Cu, Cd and Pb in seawater of the north area of South China Sea during 1986-1997 were reconstructed. It was found that in the sea area Cu and Cd contaminations were distributed near the coast while areas around Sanya, Hainan had high Pb levels because of the well-developed tourism related activities. (C) 2013 Elsevier Ltd. All rights reserved

    The Barents and Chukchi Seas: Comparison of two Arctic shelf ecosystems

    Full text link
    This paper compares and contrasts the ecosystems of the Barents and Chukchi Seas. Despite their similarity in a number of features, the Barents Sea supports a vast biomass of commercially important fish, but the Chukchi does not. Here we examine a number of aspects of these two seas to ascertain how they are similar and how they differ. We then indentify processes and mechanisms that may be responsible for their similarities and differences.Both the Barents and Chukchi Seas are high latitude, seasonally ice covered, Arctic shelf-seas. Both have strongly advective regimes, and receive water from the south. Water entering the Barents comes from the deep, ice-free and "warm" Norwegian Sea, and contains not only heat, but also a rich supply of zooplankton that supports larval fish in spring. In contrast, Bering Sea water entering the Chukchi in spring and early summer is cold. In spring, this Bering Sea water is depleted of large, lipid-rich zooplankton, thus likely resulting in a relatively low availability of zooplankton for fish. Although primary production on average is similar in the two seas, fish biomass density is an order of magnitude greater in the Barents than in the Chukchi Sea. The Barents Sea supports immense fisheries, whereas the Chukchi Sea does not. The density of cetaceans in the Barents Sea is about double that in the Chukchi Sea, as is the density of nesting seabirds, whereas, the density of pinnipeds in the Chukchi is about double that in the Barents Sea. In the Chukchi Sea, export of carbon to the benthos and benthic biomass may be greater. We hypothesize that the difference in fish abundance in the two seas is driven by differences in the heat and plankton advected into them, and the amount of primary production consumed in the upper water column. However, we suggest that the critical difference between the Chukchi and Barents Seas is the pre-cooled water entering the Chukchi Sea from the south. This cold water, and the winter mixing of the Chukchi Sea as it becomes ice covered, result in water temperatures below the physiological limits of the commercially valuable fish that thrive in the southeastern Bering Sea. If climate change warms the Barents Sea, thereby increasing the open water area via reducing ice cover, productivity at most trophic levels is likely to increase. In the Chukchi, warming should also reduce sea ice cover, permitting a longer production season. However, the shallow northern Bering and Chukchi Seas are expected to continue to be ice-covered in winter, so water there will continue to be cold in winter and spring, and is likely to continue to be a barrier to the movement of temperate fish into the Chukchi Sea. Thus, it is unlikely that large populations of boreal fish species will become established in this Arctic marginal sea. © 2012 Elsevier B.V
    corecore