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Abstract 1 

About 140-year changes in the trace metals in Porites coral samples from two locations in the 2 

northern South China Sea were investigated. Results of PCA analyses suggest that near the coast, 3 

terrestrial input impacted behavior of trace metals by 28.4%, impact of Sea Surface Temperature 4 

(SST) was 19.0%, contribution of war and infrastructure were 14.4% and 15.6% respectively. But 5 

for a location in the open sea, contribution of War and SST reached 33.2% and 16.5%, while 6 

activities of infrastructure and guano exploration reached 13.2% and 14.7%. While the 7 

spatiotemporal change model of Cu, Cd and Pb in seawater of the north area of South China Sea 8 

during 1986-1997 were reconstructed. It was found that in the sea area Cu and Cd contaminations 9 

were distributed near the coast while areas around Sanya, Hainan had high Pb levels because of the 10 

well-developed tourism related activities. 11 

 12 
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Capsule Abstract 14 

140-year changes in the trace metals in corals from South China Sea were investigated. The 15 

spatiotemporal change model of the metals in sea water was reconstructed using coral record. 16 

17 
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1. Introduction 1 

Coral reefs are important parts of the ocean ecosystems. Because of biological mineralization, corals 2 

exhibit seasonal characteristics of carbonate deposits as speleothems (Cantillana et al., 1986; 3 

Couchoud et al., 2009). This is the reason why coral can become a chronometer (Al-Horani et al., 4 

2003; Knutson et al., 1972). Corals can record environmental changes in the ocean, especially near 5 

the coast. Research on geochemical behavior of trace metals in coral skeletons, has been carried out 6 

since the 1970s (Banner, 1974; Johannes, 1975; St. John, 1974), and it was proposed that human 7 

activities have great impacts on the coral ecosystems. For example, in the case of heavy metals in the 8 

coral reefs of Hawaii (Banner, 1974), it was found that except for erosion of the coast, agriculture 9 

and sewage discharged carries high concentrations of nutrient elements into the ocean, therefore 10 

seawater pH was reduced and heavy metals were mobilized. Ocean environmental changes were 11 

always recorded in growth bands of coral skeletons through geochemical behavior of elements 12 

between seawater and corals. So it is possible that ocean environment is reconstructed by measuring 13 

elemental changes in coral skeletons (Delaney et al., 1993; Linn et al., 1990; Shen and Boyle, 1987, 14 

1988; Shen et al., 1987).  15 

 16 

  With research going on around the world (Ali et al., 2011; Dodge and Gilbert, 1984; Guzman and 17 

Jarvis, 1996; Linn et al., 1990; Mitchelmore et al., 2007; Reichelt-Brushett and McOrist, 2003; 18 

Rosales-Hoz et al., 2009; Shen and Boyle, 1988), various trace metals in corals were 19 

comprehensively studied. For example, besides its use as a signal for indicating upwelling (Lea et al., 20 

1989), Ba could be an indicator of contamination by land use (Prouty et al., 2010) and flood events 21 

(Sinclair, 2005). Likewise, Cu, Zn and Pb are indicators of industrial and mining contamination in 22 

the ocean (David, 2003; Fallon et al., 2002; Kelly et al., 2009; Shen and Boyle, 1987). On the other 23 
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hand, quantitative research on geochemical distribution behavior of trace metals between seawater 1 

and corals has been carried out but there are limited reports of qualitative studies. The quantitative 2 

research on distribution coefficients is mainly based on the chemical equilibrium of Ca2+ and other 3 

trace metals in the ocean during CaCO3 deposit in coral skeleton (Shen and Boyle, 1987). The 4 

distribution coefficients could be evaluated using the ratio of trace metals to Ca both in coral and 5 

seawater. According to experiments, a homogeneous geochemical behavior with distribution 6 

coefficient KD of ~1.0 for most elements in most corals were found (Livingston and Thompson, 1971; 7 

Reuer et al., 2003). But in some cases, it is found that the distribution coefficient of Pb could reach 8 

~2.3 (Linn et al., 1990; Shen and Boyle, 1987) while Cu reached ~0.3 (Linn et al., 1990; Livingston 9 

and Thompson, 1971). The results of these experiments supply a feasible and possible method to 10 

help reconstruct, understand and evaluate changes in trace metal concentrations in the seawater 11 

environment. 12 

 13 

South China Sea is the biggest marginal sea of China covering tropics and subtropics, in which 14 

most corals are distributed. The research on the trace metals in coral of South China Sea which 15 

focused on climate change and paleoclimate reconstruction started in the early 2000s (Wei et al., 16 

2000; Yu et al., 2002b; Yu et al., 2004; Yu et al., 2005). However, it is noteworthy that some studies 17 

on trace metals contamination in coral were also reported (Chen et al., 2010b; Cheng et al., 2005; 18 

Huang et al., 2003; Peng et al., 2006; Yu et al., 2002a). These studies focus on short-term change in 19 

trace metals in coral (<50 years), and can potentially supply database for ocean environmental 20 

studies. By contrast, the current research focuses on the coral reef close to the mainland where 21 

anthropogenic activities are frequent and have great impacts on the ocean environment. Data on 22 

coral reefs, which are far away from the mainland, is rarely reported. But in a recent survey, it was 23 
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found that the sea area far away from mainland appeared to be polluted (Gao et al., 2008). So the 1 

contamination of trace metals in coral needs more attention and requires further studies. 2 

 3 

To study the long-term geochemical behavioral characteristics of trace metals in corals from the 4 

northern area of the South China Sea over the past century, we investigated the temporal changes of 5 

concentrations of some potentially harmful trace metals. Through PCA analysis with Varimax 6 

rotation, the trace metals in the coral of South China Sea were grouped according to their potential 7 

sources. Projection of principal components was used to plot out the events or activities impacting 8 

geochemical behaviors of trace metals during the past century. The contribution of these events or 9 

activities was calculated to evaluate the characteristics of geochemical behaviors of trace metals in 10 

different locations of the northern area of the South China Sea. Using data from other locations, a 11 

spatiotemporal change of trace metals in seawater in different years was reconstructed. This provides 12 

valuable data for the understanding of the potential sources of trace metals and the formulation of 13 

strategies for historical reconstruction of regional ocean environments of the South China Sea, and 14 

other tropics and subtropics ocean worldwide. 15 

 16 

2. Materials and methods 17 

2.1. Sample Collection 18 

Living Porites coral samples was collected from Xiaodonghai, Sanya city, southern Hainan Island 19 

and Yongxing Island of Xisha Islands during May 2006 and June 2008, and labelled as XL1 and 20 

YXN 1-1, respectively (Fig. 1). The coral samples were washed with freshwater; then sectioned 21 

using a water-lubricated diamond-bit masonry saw in order to obtain a set of parallel slabs that are 22 

~8 mm thick. Dry coral slab was X-radiographed to show the annual growth bands which displayed 23 
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growth procedure of coral aragonite (Fig. 2). The coral slabs were soaked and sterilized by 10% 1 

H2O2 for 48 h, and cleaned 3 times in an ultrasonic bath using Milli-Q water, and then air-dried in the 2 

oven at 60 °C for 48 h (Chen et al., 2010a). 3 

Annual-resolution sub-samples were sliced continuously using a ceramic knife along the growth 4 

bands of coral slabs and then ground to powder for measurement. A clear pattern of alternating bands 5 

of high and low density is visible in Fig. 2. Dating was accomplished by counting these annual bands 6 

(Knutson et al., 1972). As shown in the X-radiography of the coral slabs (Fig. 2), the length of each 7 

sub-sample depended on the thickness of each annual growth band sampled. Sample XL1 and YXN 8 

1-1 contained coral skeletons growing between 1870 to 2006 and 1871 to 2008, covering 137 and 138 9 

years record, respectively. Thus, a total of 137 sub-samples from sample XL1 and 138 sub-samples 10 

from YXN 1-1 were collected for analyses.  11 

 12 

2.2. Geochemical Analysis 13 

Trace and major elements of samples, including Cr, Mn, Ni, Cu, Zn, Cd, Ba, Pb, Sr, U and Ca, were 14 

measured using a Thermo X-series II Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) at 15 

the Radiogenic Isotope Facility, the University of Queensland. In this work, only acid cleaned bottles 16 

and vials were used and ultra high purity water and nitric acid (70%, w/w) were prepared by 17 

sub-boiling distillation. Then, 2% HNO3 was prepared for both preparation of standard solutions and 18 

sample digestions. Spiked 2% HNO3 stock solution of 60 ppb was prepared with internal standard 19 

isotopes 6Li, 61Ni, 103Rh, 115In 187Re, 209Bi and 235U to correct for matrix effects of Ca and 20 

instrumental drift. Certified geochemical reference materials W-2, JCp-1 and BIR-1 were prepared 21 

as external standards, adding 60 ppb spiked solution and diluting to 6 ppb using 2% HNO3. 22 

Analyzed data were assessed for accuracy and precision using quality assurance and quality control 23 
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(QA/QC) program, which included reagent blanks, duplicate test, and certified geochemical 1 

reference materials (W-2, JCp-1 and BIR-1) with deviation <5%. 2 

 3 

Small quantities (~50 mg) of dried sub-samples were ground and mixed completely to make each 4 

sub-sample homogenous. Then ~2.5 - ~3.0 mg of sub-samples were weighed into LDPE tubes and 5 

dissolved using 10 mL 6 ppb spiked 2% HNO3 solution. The tubes’ mass were recorded before and 6 

after adding the solution. All samples were measured 4 times, and RSD of measurements at each run 7 

was typically less than 5%. 8 

 9 

2.3. Statistical Analysis 10 

For the statistical analysis, heavy metal elements data are presented as a concentration per 11 

dry-weight of coral powder sample (ng/g). Correlation between trace metals was determined using 12 

Pearson correlation analysis. Likewise, to explore the data further and classify the samples, the 13 

elemental data were submitted to a Principal Component Analysis (PCA) factoring in a correlation 14 

matrix. A PCA can take annual coral samples properties and express them in terms of a smaller data 15 

dimensional space. It identifies potential sources of the trace metals or explains the properties. 16 

Varimax rotation method was used to express the trace metals data in the rotation space, and this 17 

made the Principal Components from the original datasets more interpretable. All statistical analyses 18 

were performed with SPSS program (SPSS Inc. version 17, 2008). 19 

 20 

3. Results and discussion 21 

3.1. Concentrations of trace metals in coral samples  22 
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Concentrations of trace metals in coral samples of South China Sea are shown in Table 1. Except 1 

Sr and U, skewed distributions of other trace metals have occurred in both sample XL1 and YXN 2 

1-1, which showed that some abnormally high values of these elements occurred during some 3 

periods. To understand trace metal contamination for Porites coral of South China Sea further, data 4 

on trace metals in Porites corals obtained from the literature are also displayed in Table 2. In 5 

comparison with previous research about Porites coral from other locations worldwide, trace metals 6 

in the Porites corals used in this study showed different patterns. For example, in sample XL1 (Table 7 

1(A)), Cr has a relatively high mean value, similar to the sample from India (Jayaraju et al., 2009). 8 

But levels of Mn and Cd are lower than most samples from other locations. Levels of Ni, Cu and Zn 9 

varied in different locations. Cu and Zn are only higher than Florida keys (Livingston and Thompson, 10 

1971), Great Barrier Reef (St. John, 1974) and Philippines (David, 2003). Pb seems to be a moderate 11 

pollutant in coral XL1 from Hainan Island, because only samples from Red sea, Gulf of Aqaba and 12 

India had a higher Pb level than those from Hainan Island (Table 2). Mn and Ba showed the same 13 

levels as reported by Lewis et al. (2007), in which these two elements were recorded in Porites coral 14 

from the Great Barrier Reef as a signal of land use . As is well known, the geochemical behaviors of 15 

Sr and U in coral skeleton are usually impacted by Sea Surface Temperature (SST) (Mitsuguchi et al., 16 

1996; Thompson and Livingston, 1970; Wei et al., 2000), which is the reason for a lack of any 17 

dramatic changes of contents and normal distribution of Sr and U. Although different corals have 18 

various concentrations of Sr and U, the levels of Sr and U in this study also fall into the range 19 

reported by previous research (Swart and Hubbard, 1982; Thompson and Livingston, 1970; Wei et 20 

al., 2000). Coefficient of variation (CV) values for Cr, Mn, Zn, Cd and Pb were very high, exceeding 21 

50%. The high CV values indicated that these elements have skewed distributions in coral skeletons, 22 

which result from high-level outlier. On the other hand, Ni, Cu, Ba, Sr and U show approximately 23 
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normal distribution, which corresponds to the changes of their percentile concentrations described in 1 

Table 1(A). 2 

 3 

Levels of all trace metals in sample YXN 1-1 from Yongxing Island of Xisha Islands, are lower 4 

than sample XL1 (Table 1(B)).Concentrations of Cr, Mn and Cd in sample YXN 1-1 are lower than 5 

those in samples from different locations worldwide (Table 2). Cu and Zn in sample YXN 1-1 are 6 

only higher than those in Great Barrier Reef (St. John, 1974) and Philippines (David, 2003). 7 

Although Ba and Mn levels in YXN 1-1 fell in the range reported by Lewis et al. (2007). 8 

Concentrations of Pb in coral samples from other locations exceeded that of sample YXN 1-1 in this 9 

study at 50th percentile (Table 1(B) and 2). Contents of Sr and U in YXN 1-1 are a little lower than 10 

the XL1, showing normal distributions as for the XL1 samples. For YXN 1-1, coefficient of 11 

variation (CV) values of Cr, Mn, Cu, Zn and Pb were very high, exceeding 50%, which indicated 12 

high-concentrations of outliers occurred in YXN 1-1 for these elements. Distinct levels of trace 13 

metals in XL1 and YXN 1-1 were shown in Table 3 using a Kolmogorov-Smirnov 2-independent 14 

Sample Test. It can be seen that only Cd in XL1 and YXN 1-1 are not statistically different 15 

(p=0.393), although the median of Cd in YXN 1-1 is a little higher than XL1. Except Zn, other trace 16 

metals showed significant differences between two samples (p<0.001) (Table 3). XL1 has higher 17 

levels of trace metals than YXN 1-1, which show different geochemical behaviors of trace metals in 18 

coral samples from other locations. 19 

 20 

3.2. Correlation and PCA analysis of trace metals in coral samples 21 

  To observe the geochemical behaviors of trace metals in coral skeleton of South China Sea, 22 

Pearson correlations between the trace metals in the coral samples were determined and are shown in 23 
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Table 4. In sample XL1, Cr, Ba and Pb showed high correlations, especially between Cr and Pb 1 

(r=0.944, P<0.001) and Ba and Pb (r=0.737, P<0.001), suggesting that they had the same 2 

geochemical behaviors or sources (Table 4(A)). On the other hand, as shown above, the geochemical 3 

behaviors of Sr and U in coral skeleton are usually impacted by sea water temperature, so they had a 4 

significant correlation (r=0.659, P<0.001). 5 

In sample YXN 1-1, Cr and Pb showed a significant correlation (r=0.695, P<0.001) (Table 4 (B)). 6 

There appears to be the same sources or cause of these two metals. By contrast, Cr did not show 7 

significant correlation with Ni and Ba as in the sample XL1, which may indicate that their 8 

contamination sources and characteristics are different. However, Sr and U had significant 9 

correlation (r=0.620, P<0.001) as shown in XL1, because they have similar geochemical behaviors. 10 

Cu also had a significant correlation with Zn (r=0.693, P<0.001). It is different from XL1, in YXN 11 

1-1, Ni did not show any correlation with other elements, which indicates some special events or 12 

source impact geochemical behavior of Ni.  13 

 14 

To clearly identify temporal behavior characteristics of the trace metals, Varimax rotation was 15 

used in the PCA analysis, and the scores in the rotated principal component space are presented in 16 

Table 5. For XL1 rotated PC1 with an eigenvalue of 2.84 accounted for 28.37% of the variation 17 

(Table 5(A)). Rotated PC1 which explained Cr, Ba, Pb and half of Ni, correspond to peaks of these 18 

elements arising in period of ~1920-1940 and ~1970-2006 in which sub samples scores on PC1 are 19 

higher (Fig. 3(A)). There were very high concentrations of four elements in these two periods (Fig. 20 

4(A)). According to early research, corals could record trace metals such as Cr, Pb, Zn, Mn and other 21 

elements. which were from anthropogenic activities and human development (Al-Rousan et al., 2007; 22 

Livingston and Thompson, 1971). Likewise, Ba could be a signal of land use, river or flood inputs 23 
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(Lewis et al., 2007; McCulloch et al., 2003; Sinclair, 2005). As shown in Fig. 3(A), precipitation 1 

between 1957-2000 (Data from National Climatic Data Center of NOAA, 2 

http://www.ncdc.noaa.gov/oa/ncdc.html) in Ling-Shui station which is about 40 km from Sanya city 3 

changed in accordance with average PDO index. It can be seen that precipitation is relatively heavy 4 

during the period (~1970-2006) with positive PDO index. However, earlier research indicated that 5 

“warm” and “cool” climate periods change with positive and negative PDO indices (Böttcher and 6 

Gehlken, 1995; Böttcher et al., 1992; Zhang et al., 1997). During “warm” PDO period, heavy 7 

precipitation should appear. So it can be inferred that there were heavy precipitation during two 8 

“warm” PDO periods of ~1920-1940 and ~1970-2006. Thus some trace metals could be carried into 9 

the sea from land runoff and precipitation. In the 2012, a report on the state of the marine 10 

environment in South China Sea (South China Sea Branch, 2013) showed surface runoff and 11 

anthropogenic discharge as the main pollution sources. Therefore, PC1 should represent the effect of 12 

heavy precipitation and runoff. Cr, Ba and Pb in coral XL1 were related to terrestrial inputs. PC2 13 

with an eigenvalue of 1.90 correlated highly with Sr, U and a part of Ni (Table 5(A)). As found in 14 

previous studies, geochemical behaviors of Sr and U in coral are impacted by SST, and these two 15 

elements could be indicators of change of SST (Swart and Hubbard, 1982; Thompson and 16 

Livingston, 1970; Wei et al., 2000). So it can be concluded that PC2 explains the impact of SST 17 

changes for XL1. PC3 explained Cu and Cd, while PC4 corresponded to Mn and Zn (Table 5(A)). In 18 

Fig.3 (A), high scores on PC3 occurred in 1955-1957 and 1991- 2006. According to historical record, 19 

large-scale infrastructure constructions have been carried out in these two periods. For example 20 

some railway projects started to speed the development of Sanya up in 1956, and the Sanya 21 

Fenghuang airport construction were carried out during 1990-1994., Many other infrastructure 22 

projects were also undertaken from 1990. Thus, the higher scores of PC3 suggested contamination of 23 

http://www.ncdc.noaa.gov/oa/ncdc.html
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infrastructure by trace metals, such as Cu and Cd (Fig. 4(A)). On the other hand, high score of PC4 1 

occur during the periods of ~1952-1965, ~1913-1921 and ~1895-1905. During these periods, some 2 

infamous wars happened, such as the Eight Power Allied Forces Invasion into China at 1900, World 3 

War I during 1914-1918 and Vietnam War during 1959-1975. As studied in previous research 4 

publications, military activities or war could have an impact on the environment (Leaning, 2000; 5 

Sato, 2010; Weir, 2011). For example, in Europe, military activities (Greičiūtė et al., 2007; Kokorīte 6 

et al., 2008) and the World War I (Meerschman et al., 2011; Van Meirvenne et al., 2008) could 7 

increased the levels of heavy metals, such as Cu, Zn, Pb and etc. in soils. And after the Gulf War, the 8 

marine environment and soil were polluted by heavy metals from military activities in the Middle 9 

East countries (Al-Muzaini and Jacob, 1996; Banat et al., 1998; Bou-Olayan et al., 1995). Recently, 10 

some research reports showed that shipwreck during in war and sea-dumped weapons could cause 11 

marine pollution (Monfils, 2005; Sanderson et al., 2010; Sato, 2010). These military activities and 12 

wars were also considered as sources of trace metals contamination in the ocean as recorded in the 13 

coral (Wang et al., 2011). Therefore, the PC4 could be related to the military activities and wars. 14 

 15 

Sample YXN 1-1 from Xisha Islands is different from sample XL1 in that “warm” PDO periods 16 

did not change with any principal component, although precipitation of Xisha Islands (data from 17 

National Climatic Data Center of NOAA, http://www.ncdc.noaa.gov/oa/ncdc.html) change in 18 

accordance with PDO as well as XL1. It is suggested that trace metals were not carried into the sea 19 

area around Xisha Islands through precipitation. Rotated PC1 which related to Cu, Zn and part of Pb 20 

explained 17.73% of the variation for YXN 1-1 (Table 5(B)). As shown in Fig. 3(B), subsamples 21 

with high scores on PC1 distribute in the periods ~1949-1950 and ~1930-1942 mainly, during which 22 

China Civil War and World War II happened. According to the annual change of trace metals in YXN 23 

http://www.ncdc.noaa.gov/oa/ncdc.html
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1-1 in Fig. 4(B), maxima of concentrations of Cu, Zn and part of Pb arose during these two periods. 1 

China Civil War and World War II seem to be the potential source of Cu, Zn and part of Pb. PC2 2 

explained 16.5% of the variation, mainly for U and Sr. As described above, geochemical behavior of 3 

U and Sr are affected by SST. So PC2 could be interpreted as being caused by SST change. Higher 4 

scores of subsamples loading on PC3 mainly fell into the periods ~1958-1967, 1915-1920 and 5 

~1899-1904. As described for PC4 of XL1 above, Vietnam War, World War II and Eight Power 6 

Allied Forces Invasion of China were the reason for the high scores of subsamples on PC3 for YXN 7 

1-1. These military activities resulted in Cr, Mn and Pb contamination. High scores of samples on 8 

PC4 occurred in the period ~1955-1965 and ~1918-1930. During these two periods, besides military 9 

activities such as Japanese Invasion of Xisha Islands and the Vietnam War, some guano exploration 10 

activities by Japanese and corporations of China were also recorded. Investigation of the resources 11 

of guano and other seabird products on the atolls of Xisha Islands in 1970s reported that there are 12 

abundant guano on the Xisha Islands (Fenn, 2012; Rividi et al., 2010). As is well-known, bird guano 13 

is a source of fertilizer for food production (Zhu et al., 2010), so some guano exploration activities 14 

on Xisha Islands were recorded from 1910s. According to previous research, guano and seabird input 15 

should be one of factors controlling geochemical behaviors of trace metals in Xisha Islands (Xu et 16 

al., 2011). So it is suggested that PC4 would account for military activities together with some guano 17 

exploration, which contributed to the contamination of Cd, Ba and half of Mn during these two 18 

periods (Fig. 4(B)). PC5 for YXN 1-1 mainly explained Ni and half of Mn, which had relatively high 19 

levels in the periods ~1955-1965 and ~1989-2006. As described above, in these two periods some 20 

anthropogenic activities for guano exploration and infrastructure construction occurred. For example, 21 

Corporate of China started guano exploration in 1950s, and after 1970s China government began 22 
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infrastructure construction including airport, which was accomplished in 2000. Infrastructure 1 

construction would be the potential source for Ni in sample YXN 1-1.  2 

 3 

3.3. Principal component analysis with multivariate linear regression 4 

From the principal component analysis described above, four principal components explained 5 

77.39% of variation of trace metals for XL1. The principal components could explain the potential 6 

sources or “influence factors” of geochemical behavior for trace metals in coral samples. To 7 

investigate the effects or apportion the contributions of these “influence factors” or potential sources 8 

quantitatively, multiple linear regression (MLR) following principal component analysis (PCA) was 9 

applied to the data. This method has been reported to evaluate the sources and geochemical factors 10 

contribution of heavy metals in precipitation and sediment in previous research (Dvonch et al., 1999; 11 

Song et al., 2011). Percent contribution of four principal components to geochemical behavior of 12 

trace metals is calculated using MLR analysis by performing stepwise procedure. As described by 13 

Dvonch et al. (1999), Absolute principal component scores (APCS) on PC1 to PC4 were regressed 14 

against trace metals in XL1. The relationships (coefficients) were quantified using MLR analysis to 15 

estimate contribution from the sources or“influence factors” which the principal components 16 

represented (Table 6(A)). More than 50% of geochemical behavior of Cr, Ba and Pb was accounted 17 

for by terrestrial input by precipitation and runoff. And 4.42% of Mn, 25.43% of Ni, 15.14% of Cd 18 

and 7.85% of U were influenced by terrestrial input. SST change which PC2 represented, influence 19 

Sr and U mainly. In addition, it was suggested that 3.87% of Cr, 30.25% of Ni, 6.24 % of Cu and 20 

6.62% of Ba were influenced by SST change. Infrastructure construction accounted for Cu, Cd and 21 

U by 68.85%, 47.34% and 21.09% respectively. More than 50% of Mn and Zn were related to war 22 

and military activities.  23 
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 1 

For YXN 1-1, a total five principal components explained 77.59% of the variation of the trace 2 

metals. It can be seen in Table 6(B) that PC1 explained Cu and Zn mainly, and 21.74% of Pb. They 3 

were possibly influenced by China Civil War and World War II. As for XL1, PC2 was related to SST 4 

change, which accounted for Sr and U while 7.12% of Zn and 17.31% of Ba was influenced by this 5 

source. PC 4 for XL1 and PC3 for YXN 1-1 were mainly attributed to three military activities. Thus, 6 

Eight-Power Allied Forces Invasion into China, World War I and Vietnam War together with guano 7 

exploration accounted for more than 50% of Cr and Pb, 14.16% of Mn and 9.84% of Cu. Cd and Ba. 8 

Likewise, these “mixed activities” accounted for a part of Cr, Mn, Ni and Zn while 53.63% of Ni 9 

was considered to be a result of infrastructure construction and guano exploration which also 10 

accounted for 10.43% of Cr, 19.85% of Mn and 7.24% of Cu.  11 

 12 

  Overall, for trace metals in sample XL1, terrestrial input impacted behavior of trace metals by 13 

28.4%, impact of Sea Surface Temperature (SST) was 19.0%, contribution of war and infrastructure 14 

were 14.4% and 15.6% respectively. But for YXN 1-1, contribution of War and SST reached 33.2% 15 

and 16.5%, while activities of infrastructure and guano exploration were 13.2% and 14.7% 16 

respectively.  17 

 18 

3.4. Reconstruction of trace metals in seawater using coral with examples of Cu, Cd and Pb 19 

As studied in previous research (Linn et al., 1990; Livingston and Thompson, 1971; Reuer et al., 20 

2003; Shen and Boyle, 1987; Shen et al., 1987), trace metals could enter the coral skeleton with 21 

coral CaCO3 formation. These elements could replace Ca2+ in CaCO3 lattice or be incorporated into 22 

the lattice of coral. A distribution coefficient KD for each lattice-bound element expresses the process 23 
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and equilibrium of transfer of elements from seawater into coral. The coefficient KD could be 1 

expressed as: 2 

seawater

coral
D CaMe

CaMeK
])/[]([
])/[]([

=  3 

where KD is distribution coefficient; [Me] is trace metals concentration (Shen and Boyle, 1987). 4 

According to previous experimental analyses, trace metal concentrations in seawater could be 5 

evaluated by measuring levels of elements in corals because KD is almost constant for every species 6 

of corals. For example, KD values of most elements such as Sr, U, Ba and Cd are ~1.0 (Livingston 7 

and Thompson, 1971; Reuer et al., 2003), but for Pb and Cu KD values are ~2.3 and ~0.3 8 

respectively in most cases (Linn et al., 1990; Livingston and Thompson, 1971; Shen and Boyle, 9 

1987). This geochemical behavior of trace metals, controlled by corals, suggests that it is feasible for 10 

historical trace metals levels in seawater to be reconstructed through measuring coral elements 11 

concentrations. 12 

 13 

  In the northern South China Sea, annual changes of trace metals in coral skeleton have been 14 

reported (Cheng et al., 2005; Peng et al., 2006; Yu et al., 2002a). In comparison with previous 15 

research reports, trace metals concentrations recorded in coral samples from Daya Bay (Yu et al., 16 

2002a), Dafangji Island (Peng et al., 2006), Xiaodonghai and Yongxing Island in this study were 17 

selected to reconstruct elements levels in seawater for Cu, Cd and Pb in a period of 1986-1997. 18 

According to the elemental distribution in seawater previously reported (Quinby-Hunt and Turehian, 19 

1983), the average Ca2+ level in seawater is ~415 μg/g and Ca2+ concentration in coral were 20 

statistically estimated as ~350 μg/g. The distribution coefficient of Cu, Cd and Pb were set as 0.3, 1.0 21 

and 2.3, respectively. The spatial changes of these three elements in the northern South China Sea 22 

were reconstructed during 1986-1997 through Kriging interpolation and the results presented in Fig. 23 
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5. It can be seen that high-levels of Cu, Cd and Pb occurred in the area near Chinese mainland and 1 

Xiaodonghai near Sanya, Hainan Island. This reconstruction of the results is similar to the survey 2 

results reported by Pan et al. (2012), which shows that it is feasible to reconstruct elements 3 

concentration in seawater using coral. As is well-known, there are some industrial factories near 4 

Dafangji Island and Nuclear power plant in Daya Bay. These could be the source of Cu and Cd 5 

contamination (Peng et al., 2006; Yu et al., 2002a) while the sea area near Sanya seemed to be 6 

polluted by Pb during 1986-1997. In previous studies (Cheng and Hu, 2010; Nriagu, 1996; Saeedi et 7 

al., 2009; Zhao et al., 2009), it is known that gasoline from vehicles was a very dominant 8 

environmental source of Pb. Sanya is a famous city for tourism world-wide. So lots of vehicles, 9 

yacht and boats could produce high levels of Pb in the sea area close to Sanya, which is in turn 10 

responsible for the Pb contamination around Xiaodonghai during 1986-1997.  11 

 12 

4. Conclusions 13 

Generally, although trace metals varied in coral sample XL1 from Hainan Island and YXN 1-1 14 

from Xisha Islands, the CV for Cr, Mn, Zn and Pb were very high (>50%) in both samples. In this 15 

study, the result of Sr and U levels in corals indicated that there is a homogeneous distribution for Sr 16 

and U. Except Cd and Zn, sample XL1 had higher levels of trace metals than YXN 1-1, which 17 

suggested that corals near to Hainan Island seems to be polluted more than Xisha Islands. It is 18 

proposed that there were different potential sources or activities accounting for geochemical 19 

behavior of trace metals in coral samples by using PCA analysis. For XL1, high scores on PC1 were 20 

related to precipitation, which suggested that the terrestrial input by precipitation explained over 21 

50% of Cr, Ba, Pb, and 25% of Ni. As SST change indicators, Sr and U are dominated by SST. The 22 

third principal component corresponds to infrastructure which explained Cu and Cd mainly, as well 23 
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as more than 10% of Mn, Ba, Pb and U. High scores of PC4 related to Mn and Zn which occurred 1 

during some famous wars and military activities. But for YXN 1-1, except Sr and U which were 2 

impacted by SST, other trace metals were mainly related to the military and guano exploration 3 

activities which took place at different periods. Local activities were the important factors for 4 

geochemical behaviors of trace metals in coral of Xisha Islands. It can be inferred that the 5 

environment of Xisha Islands are less impacted from Hainan Island. 6 

Through analysis of annual change in elements in coral, the change of trace metals in seawater 7 

could be calculated and evaluated using distribution coefficient KD. In the case of reconstruction of 8 

spatiotemporal change of Cu, Cd and Pb in the north area of South China Sea during 1986-1997, it is 9 

found that the sea had Cu and Cd contamination distributed near Chinese mainland, while areas 10 

around Sanya, Hainan had high Pb level because of the well-developed tourism activities. It is 11 

therefore imperative to increase the monitoring of Xisha Islands because of ongoing exploration and 12 

construction activities on the Islands.  13 
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Table 1 1 
Percentile concentrations and statistics of trace metals in sediments and Ca in coral samples. 2 
Element(ng/g) Cr(×103) Mn(×103) Ni(×103) Cu(×103) Zn(×103) Cd Ba(×103) Pb(×103) Sr(×106) U(×103) Ca(×106) 
(A) XL1             
Minimum 0.02  0.31  4.31  1.18  0.33  0.65  3.42  0.19  6.09  2.19  319.28  
10thpercentile 0.18  0.47  4.79  1.65  1.06  1.16  4.10  0.40  6.46  2.29  337.12  
25th percentile 0.50  0.59  5.60  2.25  1.47  1.56  4.71  0.90  6.56  2.37  342.73  
50th percentile 1.16  0.70  6.07  3.00  2.13  2.10  5.63  3.96  6.71  2.48  349.02  
75thpercentile 4.08  0.90  6.46  3.69  3.56  2.73  7.25  15.86  6.85  2.57  355.46  
90th percentile 10.18  1.19  6.84  4.85  6.31  3.39  9.17  38.78  6.95  2.65  363.72  
Maximum 18.92  5.45  9.71  11.10  33.07  11.23  13.93  67.53  7.05  2.79  371.00  
Mean 3.12±0.36 0.88±0.06 6.04±0.08 3.20±0.14 3.43±0.40 2.30±0.11 6.15±0.17 11.32±1.34 6.70±0.02 2.47±0.01 349.39±0.90 
St. D. 4.10  0.71  0.88  1.56  4.58  1.23  1.95  15.39  0.19  0.13  10.30  
CV (%) 131.36  81.45  14.63  48.60  133.60  53.46  31.70  135.93  2.77  5.22  2.95  

            

(B) YXN 1-1            
Minimum 0.00  0.19  4.27  0.51  1.12  0.72  2.92  0.09  6.02  1.98  299.96  
10thpercentile 0.07  0.25  5.01  0.57  1.49  1.31  3.44  0.14  6.40  2.10  339.76  
25th percentile 0.13  0.36  5.35  0.65  1.85  1.75  3.80  0.16  6.49  2.19  345.64  
50th percentile 0.22  0.48  5.87  0.83  2.15  2.25  4.44  0.21  6.60  2.25  350.19  
75thpercentile 0.40  0.78  6.97  1.25  2.72  2.86  5.30  0.31  6.69  2.34  355.31  
90th percentile 0.54  1.13  7.89  1.50  3.44  3.82  6.38  0.74  6.81  2.44  361.21  
Maximum 1.79  3.49  13.26  33.30  20.81  7.52  8.76  4.11  7.51  2.71  399.08  
Mean 0.30±0.02 0.64±0.04 6.26±0.13 1.27±0.26 2.65±0.21 2.46±0.10 4.66±0.10 0.36±0.04 6.60±0.02 2.27±0.01 349.21±1.13 
St. D. 0.28  0.50  1.43  2.95  2.34  1.16  1.14  0.48  0.18  0.13  12.76  
CV (%) 91.47  77.73  22.92  232.31  88.12  47.24  24.53  133.96  2.75  5.61  3.65  

 3 
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Table 2 1 
Trace metals concentration (ng/g) in different Porites coral from previous research reports worldwide. 2 

Location Porites Species Cr Mn Ni Cu Zn Cd Ba Pb Reference 
Florid keys Porites porites <2 4 2 2 <2 - 15 <2 (Livingston and Thompson, 1971) 
Heron and Wistari Reef (Great 
Barrier Reef) 

Poritidae - - 0.17 0.28 2.4 0.054 - 0.27 (St. John, 1974) 

Alina's Reef (Florid keys) Porites astreoides - - - 33.7 - <0.3 - 9.3 
(Glynn et al., 1989) 

Bache Reef (Florid keys) Porites astreoides - - - 11.3 - <0.3 - <1.0 
Red Sea Porites lutea - 6.67 0.15 0.83 9.28 0.058 - 51 (Hanna and Muir, 1990) 
Punta Brava (Venezuela) Porites astreoides 0.797 - - 16.33 10.67 - - 0.208 

(Bastidas and Garcı́a, 1999) 
Bajo Caiman (Venezuela) Porites astreoides 1,952 - - 12.52 9.12 - - 1.037 
Misima Island (Papua New 
Guinea) 

Porites sp. - 0.19-1.6 - - 0.68-36.5 - - 0.24-1.22 (Fallon et al., 2002) 

Caganhao (Marinduque Island, 
Philippines) 

Porites lobata - 0.8 - 0.7 1 - - - 

(David, 2003) 
Ulan (Marinduque Island, 
Philippines) 

Porites lobata - 1 - 3.1 1.8 - - - 

Ihatub (Marinduque Island, 
Philippines) 

Porites lobata - 0.8 - 0.9 2 - - - 

Dafangji Island(China) Porites lutea 1.08 4.27 9.5 11.7 16.9 0.097 - 1.02 (Peng et al., 2006) 
Gulf of Aqaba (Jordan) Porites sp. - 8.22 - 5.36 5.52 5.15 - 47.91 (Al-Rousan et al., 2007) 
Tuticorin Coast (India) Porites andrewsi 5.23 8.53 72.2 10.56 2.51 7.21 - 28.3 (Jayaraju et al., 2009) 

 3 
 4 
 5 
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Table 3 1 
Medians (μg/g) and probability (P) values of trace metals of coral sample XL1 from Hainan Island and YXN 1-1 2 
from Xisha Islands. 3 

Trace metal Coral samples P value 
 XL1 YXN 1-1  

Cr 1.16 0.22 <0.001 
Mn 0.70 0.48 <0.001 
Ni 6.07 5.87 0.026 
Cu 3.00 0.83 <0.001 
Zn 2.13 2.15 0.010 
Cd 2.10 2.25 0.393 
Ba 5.63 4.44 <0.001 
Pb 3.96 0.21 <0.001 
Sr 6.71 6.60 <0.001 
U 2.48 2.25 <0.001 

P values are calculated using the Kolmogorov-Smirnov 2-independent Sample Test. 4 

 5 
 6 
 7 
 8 
 9 
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Table 4 1 
Pearson correlation coefficients r between trace metalsin Porites coral samples from the north area of South China Sea. 2 

 Cr Mn Ni Cu Zn Cd Ba Pb Sr U 
(A)XL1   

Cr 1.000          
Mn 0.080 1.000         
Ni 0.258** 0.269** 1.000        
Cu 0.096 0.138 0.098 1.000       
Zn -0.005 0.379** 0.009 0.030 1.000      
Cd 0.258** 0.233** -0.07 0.468** 0.104 1.000     
Ba 0.689** 0.112 0.164 0.181* -0.041 0.331** 1.000    
Pb 0.944** 0.102 0.224** 0.144 0.026 0.318** 0.737** 1.000   
Sr 0.004 -0.079 0.320** 0.062 -0.218* -0.021 0.084 -0.023 1.000  
U 0.172* -0.054 0.307** 0.271** -0.175* 0.328** 0.231** 0.212* 0.659** 1.000 

   

(B)YXN 1-1   
Cr 1.000                    
Mn 0.326** 1.000                  
Ni 0.106  0.093  1.000                
Cu 0.051  0.087  -0.005  1.000              
Zn -0.011  0.018  -0.116  0.693** 1.000            
Cd 0.118  0.295** 0.081  -0.050  0.037  1.000         
Ba 0.020  -0.001  -0.244** -0.096  0.111  0.367** 1.000       
Pb 0.493** 0.026  -0.091  0.336** 0.244** -0.048  0.068  1.000     
Sr -0.025  0.017  -0.092  -0.009  0.069  -0.003  0.210* -0.055  1.000   
U -0.049  0.047  -0.123  0.063  0.170  0.081  0.177* -0.060  0.620** 1.000  

**. Correlation is significant at the 0.01 level (2-tailed). 3 
*. Correlation is significant at the 0.05 level (2-tailed)4 
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Table 5 1 
Principal component factor scores with Varimax rotation solution of trace metals in coral samples. 2 
 Principal Component Extraction with Varimax Rotation solution 
 1 2 3 4 5 

(A) XL1      

eigenvalue  2.84 1.90 1.56 1.44  

% of Variance  28.37 19.02 15.62 14.38  

Cr 0.95 0.04 0.04 0.01  
Mn 0.07 0.03 0.15 0.82  
Ni 0.51 0.60 -0.05 0.21  
Cu 0.03 0.08 0.86 0.02  
Zn -0.03 -0.16 0.00 0.81  
Cd 0.25 0.07 0.79 0.17  
Ba 0.82 0.10 0.19 -0.01  
Pb 0.95 0.02 0.12 0.03  
Sr -0.06  0.90  -0.04  -0.13   
U 0.12 0.82 0.33 -0.13  

 

(B) YXN 1-1      

eigenvalue  1.77  1.65  1.54  1.47  1.32  

% of Variance  17.73  16.50  15.44  14.74  13.18  

Cr -0.08  0.00  0.88  0.17  0.15  
Mn 0.04  0.10  0.30  0.56  0.43  
Ni -0.05  -0.08  -0.03  0.11  0.77  
Cu 0.92  0.00  0.13  -0.05  0.10  
Zn 0.91  0.09  0.01  0.07  -0.13  
Cd 0.00  -0.02  -0.04  0.89  -0.04  
Ba -0.03  0.16  0.02  0.55  -0.66  
Pb 0.30  -0.09  0.80  -0.12  -0.22  
Sr -0.02  0.90  0.00  -0.01  -0.08  
U 0.11  0.88  -0.06  0.07  -0.06  

 3 
 4 
 5 
 6 
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Table 6 1 
Contribution apportionment of influence factors of trace metals in coral samples from the north area of South China Sea. 2 
(A) XL1 Cr Mn Ni Cu Zn Cd Ba Pb Sr U 
Terrestrial input 83.42±2.45 4.42±1.19 25.43±2.41 - - 15.14±1.76 53.48±3.56 81.84±2.15 - 7.85±0.79 
SST 3.87±0.53 - 30.25±2.63 6.24±1.35 - - 6.62±1.25 - 83.84±4.98 52.62±2.05 
Infrastructure construction 3.73±0.52 10.32±1.27 - 68.85±4.50 - 47.34±3.12 12.55±1.72 10.57±0.77 - 21.09±1.30 
Vietnam War & 
World War I 

- 54.87±4.20 10.81±1.57 - 68.59±6.51 10.08±1.44 - - - - 

R2 0.910 0.695 0.662 0.75 0.659 0.721 0.726 0.923 0.815 0.798 
           
(B) YXN 1-1           
China Civil War &  
World War II 

- - - 69.59±2.61 72.43±3.16 - - 21.74±2.18 - 8.77±1.37 

SST - - - - 7.12±0.99 - 17.31±4.98 - 82.04±4.97 71.44±3.92 
Vietnam War & 
World War I 

61.63±2.64 14.16±2.17 - 9.84±0.98 - - - 58.74±3.58 - - 

Guano exploration & war 11.73±1.15 26.13±2.95 7.77±2.28 - 5.61±0.88 79.51±5.16 59.17±9.18 - - - 
Infrastructure construction 
& Guano exploration 

10.43±1.09 19.85±2.57 53.63±6.00 7.24±0.84 - - - - - - 

R2 0.832 0.590 0.604 0.864 0.836 0.792 0.325 0.736 0.813 0.790 
 3 
 4 
 5 
 6 
 7 
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 1 
Fig. 1 North area of South China Sea and distribution of coral samples locations. 2 
 3 
 4 
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 1 
Fig. 2 X-radiograph positives of Hainan (XL1) and Yongxing Island (YXN 1-1) aschronological samples to 2 
reconstruct past annual record of trace metals. 3 
 4 
 5 
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 1 
Fig.3 Principal score of sample XL1 and YXN 1-1 on the principal components with Varimax rotation solution, and Pacific Decadal Oscillation (PDO) index changes (solid line, 2 
with red area for “warm” PDO period, blue are for “cool” PDO) in accordance with precipitation (column) of Ling-shui and Xisha Dao station (precipitation data from National 3 
Climatic Data Center of NOAA, http://www.ncdc.noaa.gov/oa/ncdc.html). 4 

http://www.ncdc.noaa.gov/oa/ncdc.html
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 1 
Fig. 4 Concentrations changes of trace metals in coral samples of South China Sea between 1870-2006 for XL1 and 1871-2008 for YXN 1-1. 2 
 3 
 4 
 5 
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 1 
Fig. 5 Reconstruction of Cd, Pb, Cu in sea water of north are of South China sea between 1986-1997 using data from location (A) Daya Bay (Yu et al., 2002a); (B) Dafangji Island 2 
(Peng et al., 2006); (C) Xiaodonghai, Sanya, Hainan (This study) and (D) Yongxing Island, Xisha Islands (This study). 3 
 4 
 5 
 6 
 7 
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