81 research outputs found

    Historical Analysis of Bibliometric Trends in the Journal of Pediatric Orthopaedics With a Particular Focus on Sex

    Get PDF
    Background: Orthopaedics is the clinical discipline with the lowest percentage of female residents and faculty. Pediatric orthopaedics has a higher percentage of women than other orthopaedic subspecialties. It was the purpose of this study to examine bibliometric trends in the Journal of Pediatric Orthopaedics (JPO) with a specific focus on sex. Methods: A bibliometeric analysis for the years 2015, 2005, 1995, 1985, 1981 was performed. The names of first and corresponding authors; corresponding author position; country of origin; number of institutions, countries, authors, printed pages, and references was tabulated. Author sex was identified for the first and corresponding authors using the “Baby Name Guesser” (www.gpeters.com/names/baby-names.php). A P<0.05 was considered significant. Results: There were 746 publications; 68.7% were from North America. The average number of authors, corresponding author position, collaborating institutions, countries, and number of references increased, whereas the number of printed pages decreased. Asia had the greatest number of authors (4.4), with Australia/New Zealand the fewest (3.4). Sex was determined for 98.3% of the first authors and 98.5% of the corresponding authors. There was a significant increase in the number of female first authors over time (5.9% to 25.6%, P<10−6), especially in Europe and North America. There were significant increase in the number of female corresponding authors over time (5.8% to 17.6%, P=0.000009). There was a significant trend to have a greater percentage of both female first and corresponding authors over time (P=0.0005) with a reverse trend for both male first and corresponding authors (P<10−6). Conclusions: In this study, we noted that the number of female first and corresponding authors in Journal of Pediatric Orthopaedics has been steadily increasing. This should result in more female pediatric orthopaedic surgeons in academic faculty positions

    Development of a step-down method for altering male C57BL/6 mouse housing density and hierarchical structure: Preparations for spaceflight studies

    Get PDF
    This study was initiated as a component of a larger undertaking designed to study bone healing in microgravity aboard the International Space Station (ISS). Spaceflight experimentation introduces multiple challenges not seen in ground studies, especially with regard to physical space, limited resources, and inability to easily reproduce results. Together, these can lead to diminished statistical power and increased risk of failure. It is because of the limited space, and need for improved statistical power by increasing sample size over historical numbers, NASA studies involving mice require housing mice at densities higher than recommended in the Guide for the Care and Use of Laboratory Animals (National Research Council, 2011). All previous NASA missions in which mice were co-housed, involved female mice; however, in our spaceflight studies examining bone healing, male mice are required for optimal experimentation. Additionally, the logistics associated with spaceflight hardware and our study design necessitated variation of density and cohort make up during the experiment. This required the development of a new method to successfully co-house male mice while varying mouse density and hierarchical structure. For this experiment, male mice in an experimental housing schematic of variable density (Spaceflight Correlate) analogous to previously established NASA spaceflight studies was compared to a standard ground based housing schematic (Normal Density Controls) throughout the experimental timeline. We hypothesized that mice in the Spaceflight Correlate group would show no significant difference in activity, aggression, or stress when compared to Normal Density Controls. Activity and aggression were assessed using a novel activity scoring system (based on prior literature, validated in-house) and stress was assessed via body weights, organ weights, and veterinary assessment. No significant differences were detected between the Spaceflight Correlate group and the Normal Density Controls in activity, aggression, body weight, or organ weight, which was confirmed by veterinary assessments. Completion of this study allowed for clearance by NASA of our bone healing experiments aboard the ISS, and our experiment was successfully launched February 19, 2017 on SpaceX CRS-10

    Forces associated with launch into space do not impact bone fracture healing

    Get PDF
    Segmental bone defects (SBDs) secondary to trauma invariably result in a prolonged recovery with an extended period of limited weight bearing on the affected limb. Soldiers sustaining blast injuries and civilians sustaining high energy trauma typify such a clinical scenario. These patients frequently sustain composite injuries with SBDs in concert with extensive soft tissue damage. For soft tissue injury resolution and skeletal reconstruction a patient may experience limited weight bearing for upwards of 6 months. Many small animal investigations have evaluated interventions for SBDs. While providing foundational information regarding the treatment of bone defects, these models do not simulate limited weight bearing conditions after injury. For example, mice ambulate immediately following anesthetic recovery, and in most cases are normally ambulating within 1-3 days post-surgery. Thus, investigations that combine disuse with bone healing may better test novel bone healing strategies. To remove weight bearing, we have designed a SBD rodent healing study in microgravity (µG) on the International Space Station (ISS) for the Rodent Research-4 (RR-4) Mission, which launched February 19, 2017 on SpaceX CRS-10 (Commercial Resupply Services). In preparation for this mission, we conducted an end-to-end mission simulation consisting of surgical infliction of SBD followed by launch simulation and hindlimb unloading (HLU) studies. In brief, a 2 mm defect was created in the femur of 10 week-old C57BL6/J male mice (n = 9-10/group). Three days after surgery, 6 groups of mice were treated as follows: 1) Vivarium Control (maintained continuously in standard cages); 2) Launch Negative Control (placed in the same spaceflight-like hardware as the Launch Positive Control group but were not subjected to launch simulation conditions); 3) Launch Positive Control (placed in spaceflight-like hardware and also subjected to vibration followed by centrifugation); 4) Launch Positive Experimental (identical to Launch Positive Control group, but placed in qualified spaceflight hardware); 5) Hindlimb Unloaded (HLU, were subjected to HLU immediately after launch simulation tests to simulate unloading in spaceflight); and 6) HLU Control (single housed in identical HLU cages but not suspended). Mice were euthanized 28 days after launch simulation and bone healing was examined via micro-Computed Tomography (µCT). These studies demonstrated that the mice post-surgery can tolerate launch conditions. Additionally, forces and vibrations associated with launch did not impact bone healing (p = .3). However, HLU resulted in a 52.5% reduction in total callus volume compared to HLU Controls (p = .0003). Taken together, these findings suggest that mice having a femoral SBD surgery tolerated the vibration and hypergravity associated with launch, and that launch simulation itself did not impact bone healing, but that the prolonged lack of weight bearing associated with HLU did impair bone healing. Based on these findings, we proceeded with testing the efficacy of FDA approved and novel SBD therapies using the unique spaceflight environment as a novel unloading model on SpaceX CRS-10

    2D nanosheet molybdenum disulphide (MoS2) modified electrodes explored towards the hydrogen evolution reaction

    Get PDF
    We explore the use of two-dimensional (2D) MoS2 nanosheets as an electro-catalyst for the Hydrogen Evolution Reaction (HER). Using four commonly employed commercially available carbon based electrode support materials, namely edge plane pyrolytic graphite (EPPG), glassy carbon (GC), boron-doped diamond (BDD) and screen-printed graphite electrodes (SPE), we critically evaluate the reported electro-catalytic performance of unmodified and MoS2 modified electrodes towards the HER. Surprisingly, current literature focuses almost exclusively on the use of GC as an underling support electrode upon which HER materials are immobilised. 2D MoS2 nanosheet modified electrodes are found to exhibit a coverage dependant electrocatalytic effect towards the HER. Modification of the supporting electrode surface with an optimal mass of 2D MoS2 nanosheets results in a lowering of the HER onset potential by ca. 0.33, 0.57, 0.29 and 0.31 V at EPPG, GC, SPE and BDD electrodes compared to their unmodified counterparts respectively. The lowering of the HER onset potential is associated with each supporting electrodes individual electron transfer kinetics/properties. The effect of MoS2 coverage is also explored. We reveal that its ability to catalyse the HER is dependent on the mass deposited until a critical mass of 2D MoS2 nanosheets is achieved, after which its electrocatalytic benefits and/or surface stability curtail. The active surface site density and turn over frequency for the 2D MoS2 nanosheets is determined, characterised and found to be dependent on both the coverage of 2D MoS2 nanosheets and the underlying/supporting substrate. This work is essential for those designing, fabricating and consequently electrochemically testing 2D nanosheet materials for the HER

    Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus.

    Get PDF
    Systemic lupus erythematosus (SLE) is a genetically complex autoimmune disease characterized by loss of immune tolerance to nuclear and cell surface antigens. Previous genome-wide association studies (GWAS) had modest sample sizes, reducing their scope and reliability. Our study comprised 7,219 cases and 15,991 controls of European ancestry, constituting a new GWAS, a meta-analysis with a published GWAS and a replication study. We have mapped 43 susceptibility loci, including ten new associations. Assisted by dense genome coverage, imputation provided evidence for missense variants underpinning associations in eight genes. Other likely causal genes were established by examining associated alleles for cis-acting eQTL effects in a range of ex vivo immune cells. We found an over-representation (n = 16) of transcription factors among SLE susceptibility genes. This finding supports the view that aberrantly regulated gene expression networks in multiple cell types in both the innate and adaptive immune response contribute to the risk of developing SLE

    Genome-wide association study identifies Sjögren’s risk loci with functional implications in immune and glandular cells

    Get PDF
    Sjögren’s disease is a complex autoimmune disease with twelve established susceptibility loci. This genome-wide association study (GWAS) identifies ten novel genome-wide significant (GWS) regions in Sjögren’s cases of European ancestry: CD247, NAB1, PTTG1-MIR146A, PRDM1-ATG5, TNFAIP3, XKR6, MAPT-CRHR1, RPTOR-CHMP6-BAIAP6, TYK2, SYNGR1. Polygenic risk scores yield predictability (AUROC = 0.71) and relative risk of 12.08. Interrogation of bioinformatics databases refine the associations, define local regulatory networks of GWS SNPs from the 95% credible set, and expand the implicated gene list to >40. Many GWS SNPs are eQTLs for genes within topologically associated domains in immune cells and/or eQTLs in the main target tissue, salivary glands.Research reported in this publication was supported by the National Institutes of Health (NIH): R01AR073855 (C.J.L.), R01AR065953 (C.J.L.), R01AR074310 (A.D.F.), P50AR060804 (K.L.S.), R01AR050782 (K.L.S), R01DE018209 (K.L.S.), R33AR076803 (I.A.), R21AR079089 (I.A.); NIDCR Sjögren’s Syndrome Clinic and Salivary Disorders Unit were supported by NIDCR Division of Intramural Research at the National Institutes of Health funds - Z01-DE000704 (B.W.); Birmingham NIHR Biomedical Research Centre (S.J.B.); Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2155 – Projektnummer 390874280 (T.W.); Research Council of Norway (Oslo, Norway) – Grant 240421 (TR.R.), 316120 (M.W-H.); Western Norway Regional Health Authority (Helse Vest) – 911807, 912043 (R.O.); Swedish Research Council for Medicine and Health (L.R., G.N., M.W-H.); Swedish Rheumatism Association (L.R., G.N., M.W-H.); King Gustav V’s 80-year Foundation (G.N.); Swedish Society of Medicine (L.R., G.N., M.W-H.); Swedish Cancer Society (E.B.); Sjögren’s Syndrome Foundation (K.L.S.); Phileona Foundation (K.L.S.). The Stockholm County Council (M.W-H.); The Swedish Twin Registry is managed through the Swedish Research Council - Grant 2017-000641. The French ASSESS (Atteinte Systémique et Evolution des patients atteints de Syndrome de Sjögren primitive) was sponsored by Assistance Publique-Hôpitaux de Paris (Ministry of Health, PHRC 2006 P060228) and the French society of Rheumatology (X.M.).publishedVersio

    At the Crossroads of Sustainability: The Natural Recompositioning of Architecture

    Get PDF
    It is widely acknowledged that the mantra of sustainability has triggered a fundamental reversal in the core of design practice: If the original purpose of architecture was to protect humans from the destructive actions of nature,today it should protect nature from the damaging actions of humans. But sustainable design is far from being a coherent body of fully totalized ideas:it has a broad spectrum of disputing interpretations that oscillate between the deterministic models of energy control and technological efficiencies, and the moralistic and romantic approaches that attempt to see in nature and natural processes a fundamental way to de-escalate the global urban footprint and its associated patterns of consumption. However, mainstream green design has been evolving by progressively absorbing the narrative of deep ecology. Nature has been being integrated into architecture literally, by inserting vegetation onto buildings; digitally, by bringing environmental data into the design process (climate records, wind streams, sun rotation and air flows are computed, modelled and effectually shape architectures), and transcendentally, by claiming that sustainable architecture nurtures “the existing and evolving connections between spiritual and material consciousness.” The acknowledgement of the inexorable affiliation between architecture and the environment is, of course, not exactly new. What is distinctive today is the reification of the role of nature in architecture as an ideological stance, now totally intertwined with state-of-art data processing and the market-driven tools brought by Natural Capitalism. This paper will examine emblematic “green” buildings produced by leading architects such as Pelli Clarke Pelli, William McDonough, Stefano Boeri, Norman Foster and BIG in the light of Tim Morton’s, Slavoj Zizek and Bruno Latour’s critique of nature. It will illustrate how, despite being able to successfully forge new creative freedoms by exploring hybridizations between the domains of design and science, sustainability’s self-righteous “naturalistic” narrative is enabling a vision of the architect as an “expert manager” focused on producing projects of ecologic “beautification” while assumed to be “saving the world,” effectively depoliticizing the architectural practice. Nevertheless, these examples attest that there is a vast and fertile field of ideas to be explored and in this regard it is important to underline that we are still in the embryonic outset of the engagement of architecture with sustainability

    Rare X chromosome abnormalities in systemic lupus erythematosus and Sjögren's syndrome

    Get PDF
    Objective: Sjögren's syndrome (SS) and systemic lupus erythematosus (SLE) are related by clinical and serologic manifestations as well as genetic risks. Both diseases are more commonly found in women than in men, at a ratio of ~10 to 1. Common X chromosome aneuploidies, 47,XXY and 47,XXX, are enriched among men and women, respectively, in either disease, suggesting a dose effect on the X chromosome. Methods: We examined cohorts of SS and SLE patients by constructing intensity plots of X chromosome single-nucleotide polymorphism alleles, along with determining the karyotype of selected patients. Results: Among ~2,500 women with SLE, we found 3 patients with a triple mosaic, consisting of 45,X/46,XX/47,XXX. Among ~2,100 women with SS, 1 patient had 45,X/46,XX/47,XXX, with a triplication of the distal p arm of the X chromosome in the 47,XXX cells. Neither the triple mosaic nor the partial triplication was found among the controls. In another SS cohort, we found a mother/daughter pair with partial triplication of this same region of the X chromosome. The triple mosaic occurs in ~1 in 25,000–50,000 live female births, while partial triplications are even rarer. Conclusion: Very rare X chromosome abnormalities are present among patients with either SS or SLE and may inform the location of a gene(s) that mediates an X dose effect, as well as critical cell types in which such an effect is operative. © 2017, American College of Rheumatolog
    corecore