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Abstract

Systemic lupus erythematosus (SLE; OMIM 152700) is a genetically complex autoimmune 

disease characterized by loss of immune tolerance to nuclear and cell surface antigens. Previous 

genome-wide association studies (GWAS) had modest sample sizes, reducing their scope and 

reliability. Our study comprised 7,219 cases and 15,991 controls of European ancestry: a new 

GWAS, meta-analysis with a published GWAS and a replication study. We have mapped 43 

susceptibility loci, including 10 novel associations. Assisted by dense genome coverage, 

imputation provided evidence for missense variants underpinning associations in eight genes. 

Other likely causal genes were established by examining associated alleles for cis-acting eQTL 

effects in a range of ex vivo immune cells. We found an over-representation (n=16) of 

transcription factors among SLE susceptibility genes. This supports the view that aberrantly 

regulated gene expression networks in multiple cell types in both the innate and adaptive immune 

response contribute to the risk of developing SLE.

SLE is a clinically heterogeneous disease with a strong genetic component, as demonstrated 

by the tenfold increase in concordance rates between monozygotic and dizygotic twins1, and 

familial aggregation (sibling risk ratio, λs = 29)2. Since 2008, the field of SLE genetics has 

been transformed by GWA3–8 and independent replication studies9,10. However, while the 

pace of discovery has been unprecedented, providing a richer understanding of lupus genetic 

etiology, these findings were driven by modestly-sized GWA studies, utilizing 1,800 

European patients3,4 and slightly fewer Asian cases5,6; they therefore had limited power to 

detect loci with relatively low odds ratios and/or minor allele frequencies11. The size of our 

study, coupled with a meta-analysis and replication study, has greatly increased the power to 

detect susceptibility loci.

We genotyped 4,946 individuals with SLE and 1,286 healthy controls using the Illumina 

HumanOmni1-Quad BeadChip. These data were combined with the genotypes of 5,727 

healthy controls taken from the University of Michigan Health and Retirement Study (HRS), 

genotyped using the Illumina HumanOmni2.5 BeadChip. Following quality control (QC) 

analyses, our data comprised 4,036 SLE cases and 6,959 controls (1,260 controls mainly 

from southern Europe genotyped using the Omni1-Quad chip and 5,699 controls from the 

HRS cohort). The final SNP set comprised 644,674 markers that were present on both the 

Omni1-Quad and Omni2.5 chips (see Online Methods). Four principal components were 

used as covariates to correct for population structure12,13. The genomic inflation factor14,15 

for our data, λ1000, was 1.02, with λGC = 1.16.

Our analysis strategy is described in detail in Online Methods, and is shown schematically in 

Supplementary Fig. 1. This GWAS identified 25 loci (Table 1 and Supplementary Fig. 2a) of 

genome-wide significance (P < 5 × 10−08). Three of these associations are novel in SLE: 

rs6740462 and rs3768792 on chromosome 2p14 and 2q34, respectively and rs7726414 on 

chromosome 5q31.1.
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To validate these findings, and to search for additional susceptibility loci, we carried out a 

meta-analysis of our GWAS results and those from an independent European SLE GWAS 

comprising 1,165 cases and 2,107 controls (the Hom et al.4 study). Each of the 25 loci 

mapped in the original GWAS had genome-wide significant p-values in this meta-analysis 

(Supplementary Table 1), and are therefore considered to be associated with SLE. We then 

designed a replication study, with inclusion based on the meta-analysis of the two GWA 

studies. At loci with no published association in SLE, we adopted a threshold for inclusion 

of P < 2.5 × 10−05, while for loci with previously reported associations the threshold was set 

at P < 1 × 10−04 (see Online Methods for rationale). The 33 SNPs with P-values meeting 

these criteria were genotyped in our replication study (Supplementary Table 2), using a 

custom panel that also included 53 ancestry informative markers (see Online Methods). 

After applying QC measures, the replication data comprised 2,018 cases and 6,925 controls, 

none of which had been included in either GWAS (see Online Methods).

Finally, we carried out a post-replication meta-analysis of the results of our GWAS, the Hom 

et al. study and the replication study for those 33 SNPs, again applying the standard measure 

of genome-wide significance. The 18 SNPs (over and above the 25 already mapped) with P-

values < 5 × 10−08 in this meta-analysis were also considered to be associated with SLE 

(Table 1 and Supplementary Fig. 2b). In addition to the three novel loci mapped in the 

GWAS, seven further variants, at loci hitherto not showing genome-wide significant 

association in SLE, were mapped in the overall meta-analysis: rs564799 (3q25.33), 

rs3794060 (11q13.4), rs10774625 (12q14.1), rs4902562 (14q24.1), rs9652601 (7q32.1), 

rs2286672 (17p13.2) and rs887369 (Xp21.2). The heritability explained by these 43 

validated susceptibility alleles is 19.3% [95% C.I. 14.1–25.5%], where the total heritability 

of lupus is estimated to be 66%16. This is a large increase on the 8.7% [5.33–12.96%] 

reported by So et al.17 in 2011 using the same measure.

We imputed both the main GWAS and Hom et al. data to the density of the 1000 Genomes 

(1KG) study18 and re-analyzed the data (see Online Methods). While no additional loci were 

identified, we did obtain stronger evidence in support of some loci, for example the signal at 

the SPRED2 locus, at which the most associated 1KG variant, rs268134, was strongly 

replicated. In addition, the imputation enabled us to fine map associated loci and to 

determine whether multiple signals were present (Supplementary Tables 3a and 3b). We 

identified multiple independent association signals at the TNFSF4, STAT4 and IRF5 loci, as 

well as five independently associated SNPs at the MHC (see below).

Given that the SNP with the smallest P-value is not necessarily the true causal variant, we 

considered SNPs from the most associated to a defined cut-off as potentially causal in our 

subsequent analyses. Specifically, guided by previous work on functional annotation19 (see 

Online Methods), the cut-off was defined as a Bayes Factor against the most significantly 

associated SNP equal to 0.34. Any SNPs in this set that were missense variants were 

considered more likely candidates than the most associated SNP. The results are summarized 

in Supplementary Tables 3c and 4, listing candidate causal missense variants in PTPN22, 
FCGR2A, NCF2, TNFAIP3, WDFY4, IRF7, ITGAM and TYK2.
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MHC polymorphisms, including SNPs and classical human leukocyte antigen (HLA) alleles, 

have consistently been observed to be associated with SLE20. We imputed HLA alleles21 in 

both the main GWAS and Hom et al. data, and incorporated them into our analysis of 1KG 

imputed data across the MHC (see Online Methods). Of the five MHC SNPs we find to be 

independently associated with SLE (Supplementary Tables 3a and 3b), the class III SNP in 

SLC44A4 (rs74290525) is the only association signal that is clearly independent of any 

HLA alleles. We find that rs74290525 is significantly associated not only when conditioning 

on each of the HLA genes separately, but even when conditioning on all 199 HLA alleles 

(see Supplementary Tables 5a–e), and is not in linkage disequilibrium (LD) with any HLA 

alleles (R2 < 0.1 with each HLA allele). We find that the best model for association includes 

the HLA class I alleles B*08:01, B*18:01, the class II alleles DQB1*02:01, DRB3*02:00 
and DQA*01:02, and the class III SNP rs74290525, consistent with previous findings 

suggesting multiple SLE associations at the MHC20 (Supplementary Tables 6a and 6b). LD 

between the five MHC SNPs and HLA alleles on known SLE risk haplotypes can be seen in 

Supplementary Table 6c.

In order to highlight potential causal genes at the susceptibility loci, the associated SNPs at 

each of the loci were tested for correlation with cis-acting gene expression in ex vivo naïve 

CD4+ T cells, B cells, natural killer (NK) cells, and stimulated and resting monocytes22–24. 

Figure 1 displays a heat map across cell types, showing genes exhibiting significant 

differential expression in relation to the SLE associated alleles. We calculated Regulatory 

Trait Concordance (RTC) scores25 (see Supplementary Figs. 3a and b) to test the 

relationship between eQTLs driven by disease-associated alleles, and other, potentially 

stronger eQTLs, which we identified at each locus. The cis eQTLs were distributed across 

all cell types tested, some being common to all cell types, such as UBE2L3 and UHRF1BP1, 

while others are more cell specific: BLK in B cells and JAZF1 in T cells. In general 

directionality was consistent, although not in all cases: for example ABHD6 showed reduced 

expression in monocytes and elevated expression in lymphocytes.

We note that some caution must be used when inferring causality, as the RTC score has a 

uniform distribution and so setting an RTC score threshold of 0.9 for example, sets the type I 

error rate to be 0.1. Furthermore, some low RTC scores were found in genes (e.g. UBE2L3) 

where the associated allele resides in a region with strong LD, and the haplotype bearing the 

associated allele shows robust evidence of functional effects on gene expression26. We 

suggest that the gene expression analyses provide some support for likely causal genes, but 

we note that proof of true causality through altered gene expression will only be elucidated 

by additional experimentation.

We then integrated the results of these eQTL analyses and the coding variant analysis with 

an in silico survey of murine phenotype data resulting from targeting gene knockouts of 

genes within the associated SLE loci (Table 2). At some loci, these lines of evidence point to 

one likely causal gene: examples include IFIH1, LYST, WDFY4 and BANK1. In other 

instances, we found evidence that supports the role of multiple genes as candidates at a 

given locus; for example, ABHD6 (an enzyme involved in the endocannabinoid pathway) 

and PXK (a lymphocyte protein kinase)3 both exhibit correlation of their expression with the 

associated SNP. Similarly, TCF7 (coding a T cell transcription factor), implicated by the 
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rs7726414 association, has been associated with type 1 diabetes27; however, we show that 

SKP1 (which encodes a protein involved in the regulation of ubiquitination), within the same 

LD block exhibits a strong cis eQTL in monocytes and NK cells. rs9652601 resides within 

CLEC16A, a gene previously reported in association studies in other autoimmune 

diseases28; we present evidence suggesting that SOCS1 (Suppressor of Cytokine Signaling 

1) is a causal gene at this locus in SLE rather than CLEC16A. Our analyses have the 

advantage of including cis eQTLs based on ex vivo cells, rather than cell line data alone. 

Nevertheless, we acknowledge the restricted range and activation states of immune cell types 

available for eQTL analyses and the limited number of murine and other functional studies 

performed on genes at the loci.

The 10 previously unmapped SLE loci (shown in bold type in Table 1 and Supplementary 

Table 3a) encompass genes of diverse function. Those of note include IKZF2 (Helios), 

which represents the third member of the Ikaros transcription factor family to be associated 

with SLE (in addition to IKZF1 and IKZF3). The association signal in the phospholipase D2 

(PLD2) is a missense variant (R172C), which may alter the function of the enzyme that 

plays a role in leukocyte migration and apoptosis. The importance of IL12, a cytokine that 

plays a critical role in the generation of γ-interferon from Th1 T cells and NK cells, is 

highlighted by the association with IL12A (Table 1), and the suggestive associations at 

IL12B and the locus encoding the IL12 receptor, IL12RB2 (Supplementary Table 2).

In view of the sexual dimorphism of SLE, the novel X chromosome association revealed by 

rs887369 is of note. We suggest that the gene CXorf21 is likely to be etiological. While the 

function of this gene is unknown, it is among a limited set of genes that largely escape X-

inactivation29. Sex chromosome dosage has been implicated in the genetic risk of SLE30. We 

observed an elevated prevalence of Klinefelter’s syndrome31 in male cases in our GWAS 

compared with the general population (see Online Methods) strengthening the sex 

chromosome dosage hypothesis. The only other gene close to rs887369 (Table 2) is GK 
(glycerol kinase) which does not escape X-inactivation, supporting CXorf21 as a candidate 

gene.

Five other genes (TNIP1, IKZF1, ETS1, WDFY4 and ARID5B) that we mapped are novel 

in European SLE, but had been previously shown to be associated with SLE in Chinese 

subjects5,6. SLE is more prevalent in non-European populations – our data suggest that locus 

heterogeneity among common genetic variants is unlikely to explain this differential 

prevalence.

We present all of our principal findings in Fig. 2. This figure indicates ten likely missense 

coding variants that contribute to SLE risk; these occur largely in genes encoding kinases 

and other enzymes. It was noted that 16 of the genes shown are transcription factors, an 

enrichment above the nine expected (P = 2.3 × 10−05, χ2 test). We studied the distribution of 

the expression of these transcription factors in the ex vivo immune cell types examined for 

eQTLs; we found no evidence of skewed expression in any cell type. Our results suggest that 

an important facet in future exploration of SLE pathogenesis will be detailed scrutiny of 

trans eQTLs and regulatory expression networks in multiple immune cells.
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ONLINE METHODS

Data: genome-wide association study (GWAS)

We genotyped 4,946 SLE cases and 1,286 healthy controls using the Illumina 

HumanOmni1-Quad BeadChip (1,140,419 markers). The genotyped controls were mostly 

from southern Europe, matching our Spanish, Italian and Turkish cases with controls from 

the same countries. We also used data for 5,727 previously genotyped controls taken from 

the University of Michigan Health and Retirement Study (HRS). These subjects were 

genotyped using the Illumina Human2.5M Beadchip (2,443,179 markers).

The clinical features of our GWAS cohort were documented on the basis of standard ACR 

classification criteria. The experiment was designed to avoid batch effects to the greatest 

extent possible. All DNA samples were sent to the laboratory at King’s College London, 

UK, where the integrity of the DNA was checked. The GWAS samples were then genotyped 

at a single laboratory. All data analysis was carried out in the laboratory at King’s College.

Genotyping for the GWAS was carried out using 82 plates, processed in 13 batches. 

Duplicate samples taken from HapMap Phase 3 were added to each plate to check 

genotyping quality. Case-control status and country of recruitment were randomized across 

plates as far as possible, in order to avoid artifactual differences in genotyping between 

plates affecting association statistics.

Our final dataset comprised genotyping of 644,674 SNPs for 4,036 SLE cases and 6,959 

controls (1,260 controls of mainly southern European ancestry and 5,699 from the HRS).

Data: Hom et al. study

We analyzed data from a previous genome-wide association study of SLE (the Hom et al. 
study), which comprised 1,165 cases following our QC analysis (see Supplementary Text). 

We used a further 2,107 previously genotyped controls from the NIH CGEMS study, which 

were genotyped using the Illumina HumanHap550 chip. Owing to the lower density of 

genotyping, in some cases data imputed to the density of the 1000 Genomes (1KG) study 

were used in the analysis of the Hom et al. study and the subsequent meta-analysis. Imputed 

data are identified in tables.

Data: replication study

A cohort of 2,310 cases not included in any previous genetic study of SLE was genotyped 

using a custom array. The largest group of samples was from the UK, followed by cohorts 

from France, the USA, Germany and Canada.

The control data for the replication study comprised 3,672 subjects from the HRS cohort 

(independent of those used in the GWAS), 3,102 subjects from a study of melanoma and 

1,202 subjects from a study of blood clotting. These control data were genotyped using the 

Illumina 2.5M chip. Following QC procedures (Supplementary Text), the final control 

dataset comprised 6,925 individuals: 3,668 from the HRS, 2,889 from the melanoma study 

and 368 from the blood clotting study. The final case dataset consisted of 2,018 samples.
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In some cases, SNPs identified by our GWAS as genome-wide significant were not present 

in the replication control data (owing to absent genotyping in one of the three control sets 

following QC), and so genotypes for those SNPs were imputed (see below). Again, we 

identify these SNPs in our results tables.

Ethical approval

The UK subjects with SLE in the study were recruited with the study having obtained ethical 

approval from the London Ethics Committee (MREC/98/2/06 and 06/MRE02/9). Individuals 

were invited into the study and given information sheets as well as verbal explanations of 

what the research entailed. For those individuals willing to participate informed written 

consent was obtained. The recruitment in continental Europe and Canada were subject to 

local review and ethical approval. Copies of the relevant supporting documentation were 

sent to the investigators at King’s College at the commencement of the study.

Quality control

Initial QC analysis of the genotype data was carried out in accordance with Illumina’s 

Technical Note on Infinium Genotyping Data. In silico QC checks were carried out of:

• Individual missingness (3% threshold)

• SNP missingness (3% threshold)

• Identity-by-descent (IBD, 0.125 threshold)

• Population structure

• Minor allele frequency (MAF, 0.002 threshold)

• Autosomal heterozygosity

• X chromosome heterozygosity

• Y chromosome calling and homozygosity

• Hardy-Weinberg equilibrium (control data only)

IBD analysis included checks both within and across cohorts; no subject in the main GWAS 

or Hom et al. study is related to any other subject in either cohort. We calculated principal 

components for the GWAS data using the EIGENSTRAT algorithm12, and derived the 

empirical genomic inflation factor13,69 for these data. As noted by Price and colleagues14, 

the definition of genomic control means that λGC is proportional to sample size. We 

therefore report λ1000, the inflation factor for an equivalent study of 1000 cases and 1000 

controls15,70, in the main text, as well as λGC.

For the replication cohort, population structure was estimated using 46 ancestry informative 

markers (following QC measures on these SNPs). As described in Supplementary Text, we 

merged these data with HapMap data to help identify non-European samples. Again, 

principal components were calculated using the EIGENSTRAT algorithm. 120 subjects that 

clustered with the non-European HapMap populations were removed from the analysis.
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Klinefelter’s syndrome

During QC analysis, we identified subjects in our GWAS cohort with abnormal karyotypes, 

consistent with Klinefelter’s syndrome (47, XXY). Three of the 365 male cases in our main 

GWAS have clinical and genetic data that confirm their status as Klinefelter’s sufferers 

(Supplementary Text). Given that the prevalence of Klinefelter’s syndrome in the general 

population is estimated to be 0.1 – 0.2%31, this estimate suggests an approximately four- to 

eight-fold increase in prevalence compared with 46, XY males, consistent with Klinefelter’s 

males and 46, XX females having a similar risk of developing SLE.

Analysis: association

All case-control analysis was carried out using the SNPTEST71,72 algorithm; we use a 

standard threshold of P = 5 × 10−8 for reporting genome-wide significance throughout. The 

inverse variance method was used for meta-analysis. All markers were fully genotyped in 

the main GWAS (i.e, no imputation was carried out). The imputation carried out for the Hom 

et al. and replication studies, and fine mapping imputation, are described below.

For all SNPs at which we report a novel association with SLE, we compared allele 

frequencies in the main GWAS controls with those in publically available control cohorts 

(1KG European samples18, Wellcome Trust Case Control Consortium (WTCCC) 

genotypes73, TwinsUK samples, HapMap CEU population data, and sample genotypes from 

the Knight laboratory expression data23). We tested for a statistically significant (α = 0.01) 

difference in allele frequency between our GWAS and the public controls, using a 1 degree 

of freedom χ2 test of allele frequencies. One SNP failed this test (rs1439112, MGAT5) and 

was removed from further analysis. In three further cases, the difference in allele frequency 

strengthened our observed association. These data are presented in Supplementary Table 7.

Annotation of results

Gene names listed in results tables were identified by overlaying GWAS results onto the 

UCSC Genome Browser. We adopted a threshold based on linkage disequilibrium: for each 

SNP, we noted the set of markers with R2 > 0.75 with respect to the SNP of interest (Table 

2).

Post hoc QC

Checks carried out following case-control analysis included examination of plots of raw 

genotype intensity; this was of particular relevance given the increase in the numbers of 

relatively rare variants due to the higher density of genotyping (as with imputation, genotype 

calling is by definition more difficult for rarer variants). We checked that the intensity plots 

showed clusters of genotypes (i.e., homozygotes or heterozygotes) that were compact and 

well discriminated. This check was also carried out with stratification by QC group. Plots of 

intensity were examined for each associated SNP, and for all of the SNPs in the replication 

study.
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Analysis: replication study chip design

We selected SNPs for the replication study based on the results of the meta-analysis of the 

two GWA studies. At loci with no known association in SLE, we adopted a threshold of P = 

2.5 × 10−05, while for loci with previously reported associations the threshold was set at P = 

1 × 10−04. This followed the methodology used in Box 1 of the WTCCC study of seven 

common diseases73. This declared SNPs as associated if the posterior odds of association 

were greater than 10. In that study, the assumption was made that 10 detectable genes were 

present, so the prior odds of a true association would be in the order of 100,000:1, assuming 

1,000,000 independent regions in the genome. Based on the autoimmune genetics literature, 

we have assumed that there are likely to be as many as 500 genes associated with SLE. We 

have required posterior odds in favour of a SNP being associated to be >1 (as opposed to 

>10, which would be advisable if declaring an association rather than choosing SNPs for 

replication). This gives a P-value threshold of 2.5 × 10−05. For SNPs at loci with previously 

published SLE associations, we have reduced our threshold for inclusion in the replication 

study to P = 1 × 10−04. This is because a priori we believe these SNPs are more likely to be 

at susceptibility loci than those with no evidence of association, increasing the prior odds by 

at least a factor of 4.

Analysis: 1000 Genomes (1KG) imputation

For imputation, both the main GWAS and the Hom et al. data were pre-phased using the 

SHAPEIT algorithm74, and then imputed to the density of the 1KG study using 

IMPUTE71,72 v2.2.3. Only markers with an IMPUTE INFO score > 0.7 were used in 

analysis. For SNPs identified in our GWAS as genome-wide significant at which data were 

absent in the replication study controls, we imputed over a +/– 1Mb region around the SNP 

of interest.

1KG data were used both to fine map loci and to determine whether multiple signals were 

present. For this analysis, we carried out a meta-analysis of 1KG imputed GWAS and Hom 

et al. data. Association testing was performed on the 1KG data within a 1 Mb window of the 

reported SNP. For the MHC, we included the complete 8 Mb region (26–34 Mb) in our 

analysis. To scan for further independent signals, association tests were performed including 

the genotype data for the most highly associated SNP as a covariate. If secondary signals 

were found to be associated by this analysis (with a P-value threshold of 5 × 10−08) and odds 

ratios were consistent across the single marker and conditional analyses, the secondary 

signals were reported as independent associations.

In order to address the problem that the most associated (lead SNP, marker with the lowest 

p-value) variant is not necessarily the best candidate as the true causal variant, we 

considered markers from the most associated down to a defined cut-off. The cut-off was 

defined as a Bayes Factor (BF) against the most associated SNP equal to 0.34. This was 

derived from assuming a prior odds of causality for a non-synonymous SNP equal to 3, 

taken from an empirical analysis of GWAS annotation19,75. Any SNPs above this BF cut-off 

that were missense variants were declared as more likely candidates than the most associated 

SNP: assuming that the prior odds of a missense SNP (being causal) against a non-missense 

SNP to be equal to 3, any missense SNP with a BF > 0.34 will have a posterior odds > 1 and 
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will therefore have a higher posterior probability than the most associated marker (if the 

most associated marker is non-missense). Therefore we searched for functional variants 

within a set of markers where inclusion in this set required a maximum Bayes factor (BF) > 

0.34 between the marker and the most associated SNP in the 1KG imputed data. We 

considered any marker that had a BF > 0.34 with respect to the most associated marker, and 

noted whether any had functional effects. We calculated an approximate BF following 

Wakefield76, using a prior distribution on effect size (odds ratio) that was proportional to 

MAF (as rare variants are believed to have large effects, while common variants are believed 

to exert small effects). The BF threshold implies that we believe associations with functional 

variants, such as missense variants, three times more (say) than intergenic variants that do 

not correlate with gene expression. We then calculated posterior model probabilities 

following Maller et al.77, but with prior odds of 3 between missense SNPs and non-missense 

SNPs; Maller et al. use a uniform prior on all model probabilities (all SNPs are considered to 

have equal weights a priori, and therefore the prior odds are 1). We present these results in 

Supplementary Table 4 where we also, separately, display SNPs with a BF > 0.1 (as a strict 

threshold of 0.34 does not reflect the uncertainty in prior odds of causality and BF 

estimates). We also calculated the BF between SNPs presented in Table 1 and the SNPs 

listed in Supplementary Table 3a and declared that the marker for association had changed if 

the BF was greater than 10 (equal to “strong” evidence on the Jeffreys’ scale78). These SNPs 

are annotated in Supplementary Table 3a.

Analysis: the MHC and HLA alleles

We included imputed HLA alleles in analysis of the MHC, allowing us to determine the 

most likely model of association within this region. HLA imputation was performed using 

HLA*IMP V221 using genotyped SNP data. To determine the best model for association 

within the HLA alleles alone we ran forward stepwise regression. We then tested the five 

SNPs listed in Supplementary Tables 6a–c for association, conditional on the HLA alleles. 

To test whether each of the five SNPs was independent of the HLA alleles (rather than just 

the alleles in the best HLA model), we carried out a test conditional on all alleles (i.e., the 

HLA alleles were used as covariates) in each HLA gene, and for all HLA alleles over all 

genes. We used a significance threshold at each stage of the stepwise regression of P = 5 × 

10−05, which is a Bonferroni adjustment for 204 tests (199 HLA alleles and 5 SNPs), with a 

familywise Type I error rate of 0.01.

Analysis: gene expression data

Gene expression data were obtained from three sources: firstly, we obtained data from 

Fairfax et al.22,23 and unpublished data from Fairfax and Knight for NK cells, naïve 

monocytes, monocytes stimulated by LPS (harvested after 2 hours and 24 hours), IFN and B 

cells. Secondly, we interrogated the Genevar database for LCL eQTL results, taking results 

from the MuTHER resource79. The CD4 (CD4 T cells) and CD14 (CD14/16 Monocytes) 

data were obtained from a previous study of gene expression in immune related cells24. An 

adjustment was made for multiple testing using a Bonferroni correction, by counting the 

number of tests across all loci for genes within +/–1MB of the SLE associated SNP. With a 

familywise test size of 0.01, the P-value threshold was 1.41 × 10−05.
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To test whether observed associations between SNPs and expression levels of cis-acting 

genes were purely due to chance, we calculated the RTC score25 for all SNP-gene eQTL 

results displayed in the heat map (Figure 1). This tests the null hypothesis that the GWAS 

associated SNP and the best eQTL (within a recombination hotspot) are tagging two 

separate effects, and the observed eQTL is purely due to the LD between the GWAS 

associated SNP and the “true” eQTL SNP. For our data, we were interested in the 

distribution of RTC scores, given that eQTL results were generated in multiple cell types. 

Not all eQTLs were consistently present across all these cells. We therefore plotted the RTC 

scores against the –log10 P-values supporting each cis eQTL in all cell types (Supplementary 

Figures 3a and 3b). Supplementary Figures 3a and 3b show that three genes were outlying: 

ITGAM in two cell types, and UBE2L3 and PLD2 in CD4 cells. However, we have strong a 
priori evidence of a true causal effect on expression by polymorphisms around UBE2L326. 

For ITGAM, we note the low RTC scores in Figure 1, which includes all eQTL data for 

ITGAM given that the results are convincing for the eQTL in LPS stimulated monocytes (P 
= 2.67 × 10−19 and RTC = 0.85). We have removed the declaration of an eQTL for PLD2. 
Supplementary Figure 4 displays a heat map for these data using a t-statistic.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Heat map for cis-acting gene expression RTC scores from ex vivo cells. The heat map 

includes all genes with evidence of cis-regulatory (+/– 1Mb) action by SLE associated SNPs 

in at least one cell type. The color represents a signed-RTC-score: a positive score indicates 

that the associated allele in the GWAS is positively correlated with gene expression; a 

negative score indicates that the associated allele in the GWAS is negatively correlated with 

gene expression. We set the RTC score to zero if the P-value for association was > 0.001. 

Colors represent the RTC-scores as follows: blue, RTC < –0.9 (GWAS risk allele reduces 
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expression); green, RTC < –0.5 (GWAS risk allele reduces expression); yellow –0.5 < RTC 

< 0.5; orange, RTC > 0.5 (GWAS risk allele increases expression); red, RTC > 0.9 (GWAS 

risk allele increases expression). A white block indicates that data were not available for this 

cell type (see Supplementary Figure 4 for results on lymphoblastoid cell lines), either 

because the probe data failed QC or the probe was not present in the experiment platform. 

Clustering was performed on cell types, including only genes with data observed for all cell 

types (i.e., missing data did not inform cell clustering). Genes were clustered using all 

available data across cells (missing data were not included when determining distance 

between pairs of genes if eQTL results were not observed for one of the pairs).
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Figure 2. 
Summary of functional role of likely causal genes in SLE and other autoimmune diseases. 

The concentric rings in the figure show several layers of evidence to support the functional 

annotation of likely causal genes for SLE listed in Table 2. The genes are illustrated 

clockwise in chromosomal order with the grey arcs delineating those loci for which several 

genes are implicated. Inner Ring 1 - the gene’s functional category, taken from Ingenuity 

Pathway Analysis; Middle Ring 2 - the presence of a cis-acting eQTL (Figure 1) and/or 

coding variant and Innermost Ring 3 - the number of autoimmune diseases (excluding 

SLE) in Immunobase - Type 1 diabetes (T1D), Celiac disease (CEL), Multiple Sclerosis 

(MS), Crohn’s Disease (CRO), Primary Billiary Cirrhosis (PBC), Psoriasis (PSO), 

Rheumatoid Arthritis (RA), Ulcerative Colitis (UC), Ankylosing Spondylitis (AS), 

Autoimmune Thyroid Disease (ATD), Juvenile Idiopathic Arthritis (JIA), Alopecia Areata 

(AA), Inflammatory Bowel Disease (IBD), Narcolepsy (NAR), Primary Sclerosing 

Cholangitis (PSC), Sjögren's Syndrome (SJO), Systemic Scleroderma (SSc), Vitiligo (VIT) - 

previously reported to be associated with the gene.

Bentham et al. Page 19

Nat Genet. Author manuscript; available in PMC 2016 May 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Bentham et al. Page 20

Ta
b

le
 1

A
lle

lic
 a

ss
oc

ia
ti

on
s 

at
 S

L
E

 s
us

ce
pt

ib
ili

ty
 lo

ci
 fo

llo
w

in
g 

m
et

a–
an

al
ys

is
 w

it
h 

re
pl

ic
at

io
n 

st
ud

y

G
W

A
S

H
om

 e
t a

l. 
G

W
A

S
R

ep
lic

at
io

n 
st

ud
y

P
os

t–
re

pl
ic

at
io

n 
st

ud
y 

m
et

a–
an

al
ys

is

SN
P

C
hr

P
os

it
io

n 
(b

37
)

L
oc

us
c

P
–v

al
ue

O
dd

s 
R

at
io

P
–v

al
ue

O
dd

s 
R

at
io

P
–v

al
ue

O
dd

s 
R

at
io

P
–v

al
ue

O
dd

s 
R

at
io

95
%

 C
I

rs
24

76
60

1
1

11
4,

37
7,

56
8

PT
PN

22
8.

34
E

–1
3

1.
39

9.
06

E
–0

4
1.

32
6.

00
E

–1
5

1.
54

1.
10

E
–2

8
1.

43
1.

34
 –

 1
.5

3

rs
18

01
27

4
1

16
1,

47
9,

74
5

FC
G

R
2A

6.
05

E
–1

1
1.

21
1.

78
E

–0
2

1.
13

8.
38

E
–0

3
1.

10
1.

04
E

–1
2

1.
16

1.
11

 –
 1

.2
1

rs
70

48
40

1
17

3,
22

6,
19

5
T

N
FS

F4
1.

65
E

–1
3

1.
26

7.
65

E
–0

5
1.

25
2.

32
E

–0
4

1.
15

3.
12

E
–1

9
1.

22
1.

17
 –

 1
.2

7

rs
17

84
95

01
a

1
18

3,
54

2,
32

3
SM

G
7 

N
C

F2
1.

63
E

–5
9

2.
24

3.
96

E
–0

5
1.

58
2.

84
E

–3
0

2.
08

3.
45

E
–8

8
2.

10
1.

95
 –

 2
.2

6

rs
30

24
50

5
1

20
6,

93
9,

90
4

IL
10

2.
55

E
–0

3
1.

12
3.

99
E

–0
7

1.
42

4.
00

E
–0

3
1.

15
4.

64
E

–0
9

1.
17

1.
11

 –
 1

.2
4

rs
97

82
95

5
1

23
6,

03
9,

87
7

LY
ST

5.
58

E
–0

4
1.

12
3.

93
E

–0
6

1.
33

1.
38

E
–0

3
1.

15
1.

25
E

–0
9

1.
16

1.
11

 –
 1

.2
2

rs
67

40
46

2 
a

2
65

,6
67

,2
72

SP
R

E
D

2
2.

31
E

–0
8

1.
20

9.
55

E
–0

2
1.

11
4.

91
E

–0
1

0.
97

2.
67

E
–0

5
1.

10
1.

05
 –

 1
.1

6

rs
21

11
48

5
2

16
3,

11
0,

53
6

IF
IH

1
3.

44
E

–0
6

1.
15

2.
97

E
–0

3
1.

17
6.

52
E

–0
5

1.
16

1.
27

E
–1

1
1.

15
1.

11
 –

 1
.2

0

rs
11

88
93

41
a

2
19

1,
94

3,
74

2
ST

A
T

4
1.

17
E

–6
5

1.
75

3.
70

E
–1

3
1.

54
2.

16
E

–4
8

1.
79

5.
59

E
–1

22
1.

73
1.

65
 –

 1
.8

1

rs
37

68
79

2
2

21
3,

87
1,

70
9

IK
Z

F
2

2.
35

E
–0

8
1.

26
5.

49
E

–0
3

1.
22

7.
12

E
–0

5
1.

22
1.

21
E

–1
3

1.
24

1.
17

 –
 1

.3
1

rs
93

11
67

6
3

58
,4

70
,3

51
A

B
H

D
6 

PX
K

5.
37

E
–0

6
1.

14
7.

58
E

–0
2

1.
10

1.
45

E
–1

0
1.

27
3.

06
E

–1
4

1.
17

1.
13

 –
 1

.2
2

rs
56

47
99

3
15

9,
72

8,
98

7
IL

12
A

1.
15

E
–0

6
1.

15
2.

83
E

–0
1

1.
06

1.
78

E
–0

4
1.

15
1.

54
E

–0
9

1.
14

1.
09

 –
 1

.1
8

rs
10

02
88

05
4

10
2,

73
7,

25
0

B
A

N
K

1
4.

50
E

–1
0

1.
21

4.
68

E
–0

1
1.

04
9.

84
E

–1
1

1.
28

4.
31

E
–1

7
1.

20
1.

15
 –

 1
.2

5

rs
77

26
41

4
5

13
3,

43
1,

83
4

T
C

F
7 

SK
P

1
9.

17
E

–1
0

1.
46

2.
88

E
–0

1
1.

14
3.

97
E

–0
8

1.
56

4.
44

E
–1

6
1.

45
1.

32
 –

 1
.5

8

rs
10

03
67

48
5

15
0,

45
8,

14
6

T
N

IP
1

2.
83

E
–1

8
1.

32
3.

36
E

–0
7

1.
35

2.
53

E
–2

4
1.

50
1.

27
E

–4
5

1.
38

1.
32

 –
 1

.4
5

rs
24

31
69

7
5

15
9,

87
9,

97
8

M
IR

14
6A

3.
23

E
–1

4
1.

25
2.

22
E

–0
3

1.
18

4.
16

E
–1

4
1.

32
8.

01
E

–2
8

1.
26

1.
21

 –
 1

.3
1

rs
12

70
94

2
6

31
,9

18
,8

60
M

H
C

 c
la

ss
 I

II
d

1.
70

E
–1

01
2.

52
6.

15
E

–1
3

1.
75

7.
43

E
–6

0
2.

23
2.

25
E

–1
65

2.
28

2.
15

 –
 2

.4
2

rs
94

62
02

7
6

34
,7

97
,2

41
U

H
R

F1
B

P1
1.

80
E

–0
5

1.
14

1.
47

E
–0

1
1.

09
2.

42
E

–0
4

1.
15

7.
55

E
–0

9
1.

14
1.

09
 –

 1
.1

9

rs
65

68
43

1
6

10
6,

58
8,

80
6

PR
D

M
1 

A
T

G
5

4.
33

E
–1

2
1.

22
2.

29
E

–0
3

1.
17

N
o 

D
at

a
N

o 
D

at
a

5.
04

E
–1

4
1.

21
1.

15
 –

 1
.2

7

rs
69

32
05

6a
6

13
8,

24
2,

43
7

T
N

FA
IP

3
1.

23
E

–1
6

1.
82

8.
08

E
–0

3
1.

47
1.

20
E

–1
4

1.
99

1.
97

E
–3

1
1.

83
1.

65
 –

 2
.0

2

rs
84

91
42

7
28

,1
85

,8
91

JA
Z

F1
3.

49
E

–0
5

1.
13

4.
23

E
–0

4
1.

20
2.

04
E

–0
4

1.
14

8.
61

E
–1

1
1.

14
1.

10
 –

 1
.1

9

rs
49

17
01

4
7

50
,3

05
,8

63
IK

Z
F1

4.
10

E
–0

5
1.

14
3.

25
E

–0
3

1.
19

1.
49

E
–0

9
1.

27
6.

39
E

–1
4

1.
18

1.
13

 –
 1

.2
4

rs
10

48
86

31
7

12
8,

59
4,

18
3

IR
F5

2.
66

E
–4

4
1.

79
4.

50
E

–1
7

1.
93

2.
86

E
–5

2
2.

12
9.

37
E

–1
10

1.
92

1.
81

 –
 2

.0
3

rs
27

36
34

0
8

11
,3

43
,9

73
B

L
K

2.
14

E
–1

6
1.

30
6.

42
E

–0
5

1.
27

N
o 

D
at

a
N

o 
D

at
a

6.
28

E
–2

0
1.

29
1.

22
 –

 1
.3

7

rs
26

63
05

2a
10

50
,0

69
,3

95
W

D
FY

4
1.

59
E

–0
8

1.
18

6.
25

E
–0

2
1.

10
N

o 
D

at
a

N
o 

D
at

a
5.

25
E

–0
9

1.
16

1.
10

 –
 1

.2
2

rs
49

48
49

6
10

63
,8

05
,6

17
A

R
ID

5B
1.

17
E

–0
6

1.
15

5.
76

E
–0

1
0.

97
2.

76
E

–0
8

1.
22

1.
04

E
–1

0
1.

14
1.

10
 –

 1
.1

9

Nat Genet. Author manuscript; available in PMC 2016 May 18.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Bentham et al. Page 21

G
W

A
S

H
om

 e
t a

l. 
G

W
A

S
R

ep
lic

at
io

n 
st

ud
y

P
os

t–
re

pl
ic

at
io

n 
st

ud
y 

m
et

a–
an

al
ys

is

SN
P

C
hr

P
os

it
io

n 
(b

37
)

L
oc

us
c

P
–v

al
ue

O
dd

s 
R

at
io

P
–v

al
ue

O
dd

s 
R

at
io

P
–v

al
ue

O
dd

s 
R

at
io

P
–v

al
ue

O
dd

s 
R

at
io

95
%

 C
I

rs
12

80
22

00
a

11
56

6,
93

6
IR

F7
8.

43
E

–0
9

1.
24

2.
03

E
–0

2
1.

18
N

o 
D

at
a

N
o 

D
at

a
8.

81
E

–1
0

1.
23

1.
15

 –
 1

.3
1

rs
27

32
54

9a
11

35
,0

88
,3

99
C

D
44

1.
31

E
–1

0
1.

21
1.

51
E

–0
3

1.
18

1.
88

E
–1

3
1.

31
1.

20
E

–2
3

1.
24

1.
19

 –
 1

.2
9

rs
37

94
06

0
11

71
,1

87
,6

79
D

H
C

R
7 

N
A

D
SY

N
1

1.
13

E
–0

4
1.

13
8.

18
E

–0
2

1.
11

2.
61

E
–2

3
1.

47
1.

32
E

–2
0

1.
23

1.
18

 –
 1

.2
9

rs
79

41
76

5
11

12
8,

49
9,

00
0

E
T

S1
 F

L
I1

9.
82

E
–0

7
1.

15
4.

64
E

–0
3

1.
17

1.
55

E
–0

3
1.

12
1.

35
E

–1
0

1.
14

1.
10

 –
 1

.1
9

rs
10

77
46

25
12

11
1,

91
0,

21
9

SH
2B

3
9.

47
E

–0
8

1.
17

4.
32

E
–0

3
1.

16
9.

81
E

–0
2

1.
06

4.
09

E
–0

9
1.

13
1.

08
 –

 1
.1

8

rs
10

59
31

2
12

12
9,

27
8,

86
4

SL
C

15
A

4
3.

20
E

–0
6

1.
14

3.
97

E
–0

3
1.

16
4.

14
E

–0
7

1.
20

1.
48

E
–1

3
1.

17
1.

12
 –

 1
.2

1

rs
49

02
56

2
14

68
,7

31
,4

58
R

A
D

51
B

4.
85

E
–0

5
1.

13
1.

49
E

–0
2

1.
14

5.
78

E
–0

5
1.

16
6.

15
E

–1
0

1.
14

1.
09

 –
 1

.1
9

rs
22

89
58

3a
15

75
,3

11
,0

36
C

SK
9.

35
E

–0
9

1.
20

1.
68

E
–0

2
1.

14
2.

12
E

–0
6

1.
20

6.
22

E
–1

5
1.

19
1.

14
 –

 1
.2

4

rs
96

52
60

1a
,b

16
11

,1
74

,3
65

C
II

TA
 S

O
C

S1
3.

86
E

–0
7

1.
17

4.
00

E
–0

1
1.

05
2.

71
E

–1
5

1.
36

7.
42

E
–1

7
1.

21
1.

15
 –

 1
.2

6

rs
34

57
29

43
a,

b
16

31
,2

72
,3

53
IT

G
A

M
1.

74
E

–4
7

1.
78

1.
90

E
–0

7
1.

52
1.

04
E

–2
4

1.
68

3.
39

E
–7

6
1.

71
1.

61
 –

 1
.8

1

rs
11

64
40

34
16

85
,9

72
,6

12
IR

F8
1.

25
E

–1
5

1.
34

9.
81

E
–0

3
1.

18
5.

42
E

–0
4

1.
16

9.
58

E
–1

8
1.

25
1.

19
 –

 1
.3

2

rs
22

86
67

2 
b

17
4,

71
2,

61
7

P
L

D
2

5.
81

E
–0

5
1.

24
2.

50
E

–0
2

1.
24

2.
35

E
–0

4
1.

27
2.

93
E

–0
9

1.
25

1.
16

 –
 1

.3
5

rs
29

41
50

9
17

37
,9

21
,1

94
IK

Z
F3

4.
32

E
–0

6
1.

41
2.

34
E

–0
1

1.
16

6.
27

E
–0

4
1.

35
7.

98
E

–0
9

1.
35

1.
22

 –
 1

.4
9

rs
23

04
25

6a
19

10
,4

75
,6

52
T

Y
K

2
2.

34
E

–1
2

1.
26

1.
51

E
–0

2
1.

16
N

o 
D

at
a

N
o 

D
at

a
3.

50
E

–1
3

1.
24

1.
17

 –
 1

.3
1

rs
74

44
a,

b
22

21
,9

76
,9

34
U

B
E

2L
3

1.
30

E
–1

3
1.

28
1.

89
E

–0
1

1.
09

3.
51

E
–1

1
1.

32
1.

84
E

–2
2

1.
27

1.
21

 –
 1

.3
3

rs
88

73
69

 a
X

30
,5

77
,8

46
C

X
or

f2
1

9.
25

E
–0

7
1.

16
6.

62
E

–0
2

1.
23

4.
55

E
–0

4
1.

14
5.

26
E

–1
0

1.
15

1.
10

 –
 1

.2
1

rs
17

34
78

7a
X

15
3,

32
5,

44
6

IR
A

K
1 

M
E

C
P2

2.
83

E
–1

1
1.

57
8.

58
E

–0
4

1.
52

9.
54

E
–0

6
1.

20
1.

78
E

–1
5

1.
31

1.
22

 –
 1

.4
0

N
ov

el
 S

L
E

 a
ss

oc
ia

tio
ns

 a
re

 s
ho

w
n 

in
 b

ol
d 

ty
pe

.

a Im
pu

te
d 

da
ta

 in
 th

e 
H

om
 e

t a
l s

tu
dy

. I
M

PU
T

E
 in

fo
 s

co
re

s:
 r

s1
78

49
50

1 
(0

.7
8)

, r
s6

74
04

62
 (

1.
00

),
 r

s1
18

89
34

1 
(0

.9
9)

, r
s6

93
20

56
 (

0.
94

),
 r

s2
66

30
52

 (
1.

00
),

 r
s1

28
02

20
0 

(0
.9

0)
, r

s2
73

25
49

 (
1.

00
),

 r
s2

28
95

83
 

(0
.9

9)
, r

s9
65

26
01

 (
1.

00
),

 r
s3

45
72

94
3 

(0
.9

0)
, r

s2
30

42
56

 (
0.

95
),

 r
s7

44
4 

(1
.0

0)
, r

s8
87

36
9 

(0
.8

3)
, r

s1
73

47
87

 (
0.

95
).

b Im
pu

te
d 

co
nt

ro
ls

 in
 th

e 
re

pl
ic

at
io

n 
st

ud
y.

 I
M

PU
T

E
 in

fo
 s

co
re

s:
 r

s9
65

26
01

(0
.9

9)
, r

s3
45

72
94

3 
(0

.9
1)

, r
s2

28
66

72
(0

.8
8)

, r
s7

44
4 

(0
.9

9)
.

c Fo
r 

ra
tio

na
le

 f
or

 c
an

di
da

te
 g

en
e 

se
le

ct
io

n 
at

 th
e 

as
so

ci
at

ed
 lo

ci
 s

ee
 T

ab
le

 2

d Fo
r 

m
or

e 
de

ta
ile

d 
an

al
ys

is
 o

f 
M

H
C

 s
ee

 te
xt

Nat Genet. Author manuscript; available in PMC 2016 May 18.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Bentham et al. Page 22

Ta
b

le
 2

C
an

di
da

te
 g

en
es

 a
t 

SL
E

 a
ss

oc
ia

te
d 

lo
ci

A
ss

oc
ia

te
d 

SN
P

C
hr

G
en

es
 w

it
hi

n 
+/

−2
00

kb
 o

f 
SN

P
G

en
es

 w
it

hi
n 

sa
m

e 

L
D

 b
lo

ck
 a

s 
SN

P
a

Im
m

un
e 

ph
en

ot
yp

e 
in

 

m
ur

in
e 

m
od

el
b

C
od

in
g 

va
ri

an
t

ci
s 

eQ
T

L
s 

w
it

h 
SN

P

F
un

ct
io

na
l a

nd
/o

r 
fi

ne
 m

ap
pi

ng
 

st
ud

ie
s 

an
d 

R
ef

er
en

ce
L

ik
el

y 
ca

us
al

 g
en

es
c

rs
24

76
60

1
1

M
A

G
I3

, P
H

T
F1

, R
SB

N
1,

 P
T

PN
22

, 
B

C
L

2L
15

A
P4

B
1,

 D
C

L
R

E
1B

, H
IP

K
1,

 O
L

FM
L

3
R

SB
N

1,
 P

T
PN

22
PT

PN
22

PT
PN

22
PT

PN
22

32
PT

PN
22

rs
18

01
27

4
1

M
PZ

, S
D

H
C

, C
1o

rf
19

2
FC

G
R

2A
, H

SP
A

6,
 F

C
G

R
3A

FC
G

R
2B

, F
C

G
R

2C
, F

C
G

R
3B

, F
C

R
L

A
FC

G
R

2A
FC

G
R

2A
FC

G
R

2B
FC

G
R

3B

FC
G

R
2A

FC
G

R
2B

FC
G

R
3B

FC
G

R
2A

, F
C

G
R

2B
FC

G
R

2A
FC

G
R

2B
FC

G
R

3B

 3
3

 3
4

 3
5

FC
G

R
2A

FC
G

R
2B

FC
G

R
3B

rs
70

48
40

1
T

N
FS

F4
T

N
FS

F4
T

N
FS

F4
T

N
FS

F4
36

T
N

FS
F4

rs
17

84
95

01
1

N
M

N
A

T
2,

 S
M

G
7,

 N
C

F2
, A

R
PC

5,
 

R
G

L
1 

A
PO

B
E

C
4

SM
G

7,
 N

C
F2

N
C

F2
SM

G
7

N
C

F2
37

SM
G

7,
 N

C
F2

rs
30

24
50

5
1

R
A

SS
F5

, E
IF

2D
, D

Y
R

K
3

M
A

PK
A

PK
2,

 IL
10

, I
L

19
, I

L
20

IL
24

, F
A

IM
3,

 P
IG

R
, F

C
A

M
R

IL
10

R
A

SS
F5

 
M

A
PK

A
PK

2,
 

IL
10

 F
A

IM
3,

 
FC

A
M

R

IL
10

38
IL

10

rs
97

82
95

5
1

LY
ST

, N
ID

1
LY

ST
LY

ST
LY

ST
LY

ST
39

LY
ST

rs
67

40
46

2
2

A
C

T
R

2,
 S

PR
E

D
2

SP
R

E
D

2
SP

R
E

D
2

rs
21

11
48

5
2

D
PP

4,
 G

C
G

, F
A

P,
 IF

IH
1,

 G
C

A
, 

K
C

N
H

7
IF

IH
1

IF
IH

1
IF

IH
1

IF
IH

1
IF

IH
1

40
IF

IH
1

rs
11

88
93

41
2

G
L

S,
 S

TA
T

1,
 S

TA
T

4,
 M

Y
O

1B
ST

A
T

4
ST

A
T

1,
 S

TA
T

4
ST

A
T

4
41

ST
A

T
4

rs
37

68
79

2
2

IK
Z

F2
IK

Z
F2

IK
Z

F2
IK

Z
F2

42
IK

Z
F2

rs
93

11
67

6
3

A
B

H
D

6,
 R

PP
14

, P
X

K
, P

D
H

B
, K

C
T

D
6

A
C

O
X

2,
 F

A
M

10
7A

, F
A

M
3D

PX
K

, P
D

H
B

A
B

H
D

6,
 P

X
K

A
B

H
D

6
PX

K
43  4

4
A

B
H

D
6,

 P
X

K

rs
56

47
99

3
SC

H
IP

1,
 IL

12
A

IL
12

A
IL

12
A

IL
12

A
IL

12
A

rs
10

02
88

05
4

B
A

N
K

1
B

A
N

K
1

B
A

N
K

1
B

A
N

K
1

B
A

N
K

1
45

B
A

N
K

1

rs
77

26
41

4
5

C
5o

rf
15

, V
D

A
C

1,
 T

C
F7

, S
K

P1
T

C
F7

, S
K

P1
T

C
F7

SK
P1

T
C

F7
, S

K
P1

rs
10

03
67

48
5

IR
G

M
, Z

N
F3

00
, G

PX
3,

 T
N

IP
1,

 
A

N
X

A
6

C
C

D
C

69
, G

M
2A

, S
L

C
36

A
3

T
N

IP
1

T
N

IP
1

A
N

X
A

6
T

N
IP

1
46

T
N

IP
1

rs
24

31
69

7
5

C
1Q

T
N

F2
, C

5o
rf

54
, S

L
U

7,
 P

T
T

G
1,

 
M

IR
14

6A
, 3

14
2

in
te

rg
en

ic
PT

T
G

1
M

IR
14

6A
47

M
IR

14
6A

rs
12

70
94

2
6

M
H

C
d

rs
94

62
02

7
6

C
6o

rf
10

6,
 S

N
R

PC
, U

H
R

F1
B

P1
TA

F1
1,

 A
N

K
S1

A
U

H
R

F1
B

P1
U

H
R

F1
B

P1
, A

N
K

S1
A

, C
6o

rf
10

6
U

H
R

F1
B

P1
48

U
H

R
F1

B
P1

rs
65

68
43

1
6

PR
D

M
1

A
T

G
5

in
te

rg
en

ic
PR

D
M

1
A

T
G

5
PR

D
M

1
A

T
G

5
49  5

0
PR

D
M

1,
 A

T
G

5

rs
69

32
05

6
6

T
N

FA
IP

3
PE

R
P

T
N

FA
IP

3
T

N
FA

IP
3

PE
R

P
T

N
FA

IP
3

T
N

FA
IP

3
51

T
N

FA
IP

3

Nat Genet. Author manuscript; available in PMC 2016 May 18.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Bentham et al. Page 23

A
ss

oc
ia

te
d 

SN
P

C
hr

G
en

es
 w

it
hi

n 
+/

−2
00

kb
 o

f 
SN

P
G

en
es

 w
it

hi
n 

sa
m

e 

L
D

 b
lo

ck
 a

s 
SN

P
a

Im
m

un
e 

ph
en

ot
yp

e 
in

 

m
ur

in
e 

m
od

el
b

C
od

in
g 

va
ri

an
t

ci
s 

eQ
T

L
s 

w
it

h 
SN

P

F
un

ct
io

na
l a

nd
/o

r 
fi

ne
 m

ap
pi

ng
 

st
ud

ie
s 

an
d 

R
ef

er
en

ce
L

ik
el

y 
ca

us
al

 g
en

es
c

rs
84

91
42

7
JA

Z
F1

, C
R

E
B

5
JA

Z
F1

JA
Z

F1
JA

Z
F1

rs
49

17
01

4
7

Z
PB

P,
 C

7o
rf

72
, I

K
Z

F1
IK

Z
F1

IK
Z

F1
IK

Z
F1

52
IK

Z
F1

rs
10

48
86

31
7

C
A

L
U

, O
PN

1S
W

, C
C

D
C

13
6,

 F
L

N
C

A
T

P6
V

1F
, I

R
F5

, T
N

PO
3,

 T
SP

A
N

33
IR

F5
, T

N
PO

3
IR

F5
IR

F5
, T

N
PO

3
IR

F5
53

IR
F5

rs
27

36
34

0
8

M
T

M
R

9,
 S

L
C

35
G

5,
 C

8o
rf

12
FA

M
16

7A
, B

L
K

, G
A

TA
4

B
L

K
B

L
K

, X
K

R
6

B
L

K
54

B
L

K

rs
26

63
05

2
10

W
D

FY
4,

 L
R

R
C

18
, V

ST
M

4
W

D
FY

4
W

D
FY

4
W

D
FY

4
W

D
FY

4
55

W
D

FY
4

rs
49

48
49

6
10

A
R

ID
5B

, R
T

K
N

2
A

R
ID

5B
A

R
ID

5B
A

R
ID

5B

rs
12

80
22

00
11

B
4G

A
L

N
T

4,
 P

K
P3

, S
IG

IR
R

, A
N

O
9,

 
PT

D
SS

2
R

N
H

1,
 H

R
A

S,
 L

R
R

C
56

, C
11

or
f3

5,
 

R
A

SS
F7

PH
R

F1
, I

R
F7

, C
D

H
R

5,
 S

C
T,

 D
R

D
4,

 
D

E
A

F1
E

PS
8L

2,
 T

M
E

M
80

, T
A

L
D

O
1

L
R

R
C

56
, L

M
N

T
D

2
R

A
SS

F7
, M

IR
21

0H
G

PH
R

F1
, I

R
F7

, 
C

D
H

R
5

SI
G

IR
R

IR
F7

IR
F7

IR
F7

, R
N

H
1,

 H
R

A
S,

 R
A

SS
F7

, 
PH

R
F1

, a
nd

, T
M

E
M

80
IR

F7
56

IR
F7

rs
27

32
54

9
11

A
PI

P,
 P

D
H

X
C

D
44

, S
L

C
1A

2
up

st
re

am
, C

D
44

C
D

44
C

D
44

57
C

D
44

rs
37

94
06

0
11

D
H

C
R

7,
 N

A
D

SY
N

1,
 K

R
TA

P5
D

H
C

R
7,

 N
A

D
SY

N
1

D
H

C
R

7,
 N

A
D

SY
N

1
D

H
C

R
7,

 N
A

D
SY

N
1

rs
79

41
76

5
11

E
T

S1
, F

L
I1

C
U

X
2

in
te

rg
en

ic
E

T
S1

FL
I1

E
T

S1
FL

I1
58  5

9
E

T
S1

 F
L

I1

rs
10

77
46

25
12

FA
M

10
9A

, S
H

2B
3

A
T

X
N

2,
 B

R
A

P
SH

2B
3,

 A
T

X
N

2
SH

2B
3

SH
2B

3
60

SH
2B

3

rs
10

59
31

2
12

T
M

E
M

13
2C

, S
L

C
15

A
4,

 G
LT

1D
1

SL
C

15
A

4
SL

C
15

A
4

SL
C

15
A

4
SL

C
15

A
4

rs
49

02
56

2
14

R
A

D
51

B
R

A
D

51
B

R
A

D
51

B

rs
22

89
58

3
15

L
M

A
N

1L
, C

PL
X

3,
 U

L
K

3,
 S

C
A

M
P2

M
PI

, F
A

M
21

9B
, C

O
X

5A
, R

PP
25

SC
A

M
P5

, P
PC

D
C

, C
15

or
f3

9
SC

A
M

P5
, P

PC
D

C
C

SK
, U

L
K

3,
 M

PI
,

FA
M

21
9B

, C
15

or
f3

9
C

SK
61

C
SK

rs
96

52
60

1
16

C
II

TA
, D

E
X

I, 
C

L
E

C
16

A
, R

M
I2

, 
SO

C
S1

T
N

P2
, P

R
M

3,
 P

R
M

2
C

L
E

C
16

A
C

II
TA

SO
C

S1
SO

C
S1

, R
M

I2
C

II
TA

SO
C

S1
62  6

3
C

II
TA

, S
O

C
S1

rs
34

57
29

43
16

Z
N

F6
68

, Z
N

F6
46

, P
R

SS
53

, V
K

O
R

C
1,

 
B

C
K

D
K

 K
A

T
8

PR
SS

8,
 P

R
SS

36
, F

U
S,

 P
Y

C
A

R
D

C
16

or
f9

8,
 T

R
IM

72
, P

Y
D

C
1,

 IT
G

A
M

IT
G

A
X

, I
T

G
A

D
, C

O
X

6A
2,

 Z
N

F8
43

, 
A

R
M

C
5

IT
G

A
M

IT
G

A
M

IT
G

A
X

IT
G

A
D

PY
C

A
R

D

IT
G

A
M

IT
G

A
M

, P
Y

C
A

R
D

IT
G

A
M

64
IT

G
A

M

rs
11

64
40

34
16

C
16

or
f7

4,
 E

M
C

8,
 C

O
X

4I
1,

 IR
F8

in
te

rg
en

ic
IR

F8
IR

F8
65

IR
F8

rs
22

86
67

2
17

A
L

O
X

15
, P

E
L

P1
, A

R
R

B
2,

 M
E

D
11

, 
C

X
C

L
16

Z
M

Y
N

D
15

, T
M

4S
F5

, V
M

O
1,

 G
LT

PD
2

PS
M

B
6,

 P
L

D
2,

 M
IN

K
1,

 C
H

R
N

E
, 

C
17

or
f1

07
G

P1
B

A
, S

L
C

25
A

11
, R

N
F1

67
, P

FN
1,

 
E

N
O

3

PL
D

2

A
L

O
X

15
C

X
C

L
16

IN
C

A
1

K
IF

1C
PL

D
2

PL
D

2
R

N
F1

67
PL

D
2

Nat Genet. Author manuscript; available in PMC 2016 May 18.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Bentham et al. Page 24

A
ss

oc
ia

te
d 

SN
P

C
hr

G
en

es
 w

it
hi

n 
+/

−2
00

kb
 o

f 
SN

P
G

en
es

 w
it

hi
n 

sa
m

e 

L
D

 b
lo

ck
 a

s 
SN

P
a

Im
m

un
e 

ph
en

ot
yp

e 
in

 

m
ur

in
e 

m
od

el
b

C
od

in
g 

va
ri

an
t

ci
s 

eQ
T

L
s 

w
it

h 
SN

P

F
un

ct
io

na
l a

nd
/o

r 
fi

ne
 m

ap
pi

ng
 

st
ud

ie
s 

an
d 

R
ef

er
en

ce
L

ik
el

y 
ca

us
al

 g
en

es
c

SP
A

G
7,

 C
A

M
TA

2,
 IN

C
A

1,
 K

IF
1C

rs
29

41
50

9
17

N
E

U
R

O
D

2,
 P

PP
1R

1B
, S

TA
R

D
3,

 
T

C
A

P,
 P

N
M

T
PG

A
P3

, E
R

B
B

2,
 M

IE
N

1,
 G

R
B

7,
 

IK
Z

F3
, Z

PB
P2

G
SD

M
B

, O
R

M
D

L
3,

 L
R

R
C

3C
, 

G
SD

M
A

E
R

B
B

2,
 H

E
R

–2
, 

C
17

or
f3

7
G

R
B

7,
 IK

Z
F3

, 
Z

N
FN

1A
3

Z
B

PB
2,

 G
SD

M
B

IK
Z

F3
IK

Z
F3

66
IK

Z
F3

rs
23

04
25

6
19

D
N

M
T

1,
 S

1P
R

2,
 M

R
PL

4,
 IC

A
M

1,
 

IC
A

M
4 

IC
A

M
5

Z
G

L
P1

, F
D

X
1L

, R
A

V
E

R
1,

 IC
A

M
3,

 
T

Y
K

2,
 C

D
C

37
PD

E
4A

, K
E

A
P1

, S
1P

R
5,

 A
T

G
4D

, 
K

R
I1

T
Y

K
2

D
N

M
T

1,
 

S1
PR

2
IC

A
M

1,
 S

1P
R

5
T

Y
K

2

T
Y

K
2

T
Y

K
2,

 IC
A

M
3

T
Y

K
2

67
T

Y
K

2

rs
74

44
22

H
IC

2,
 R

IM
B

P3
C

, U
B

E
2L

3,
 Y

D
JC

, 
C

C
D

C
11

6
SD

F2
L

1,
 P

PI
L

2,
 Y

PE
L

1,
 M

A
PK

1

U
B

E
2L

3
Y

D
JC

M
A

PK
1

U
B

E
2L

3
U

B
E

2L
3

26
U

B
E

2L
3

rs
88

73
69

X
C

X
or

f2
1,

 G
K

C
X

or
f2

1
C

X
or

f2
1

rs
17

34
78

7
X

L
1C

A
M

, L
C

A
10

, A
V

PR
2,

 A
R

H
G

A
P4

, 
N

A
A

10
R

E
N

B
P,

 H
C

FC
1,

 T
M

E
M

18
7,

 IR
A

K
1,

 
M

E
C

P2
O

PN
1L

W
, T

E
X

28
P2

, O
PN

1M
W

, 
T

E
X

28
P1

O
PN

1M
W

2,
 T

E
X

28
, T

K
T

L
1

A
R

H
G

A
P4

, N
A

A
10

R
E

N
B

P,
 H

C
FC

1
T

M
E

M
18

7,
 IR

A
K

1
M

IR
71

8,
 M

E
C

P2

IR
A

K
1

IR
A

K
1

M
E

C
P2

68
IR

A
K

1,
 M

E
C

P2

a T
he

 L
D

 b
lo

ck
 is

 d
ef

in
ed

 a
s 

SN
Ps

 s
ho

w
in

g 
a 

co
rr

el
at

io
n 

(r
2 )

 o
f 

0.
75

 w
ith

 th
e 

as
so

ci
at

ed
 S

N
P

b T
he

 im
m

un
e 

ph
en

ot
yp

e 
de

si
gn

at
io

n 
is

 ta
ke

n 
fr

om
 h

ttp
://

w
w

w
.in

fo
rm

at
ic

s.
ja

x.
or

g/
ph

en
ot

yp
es

.s
ht

m
l o

f 
ge

ne
s 

w
ith

in
 +

/−
20

0k
b 

of
 a

ss
oc

ia
te

d 
SN

P

c T
he

 g
en

es
 im

pl
ic

at
ed

 a
t e

ac
h 

lo
cu

s 
as

 p
ot

en
tia

lly
 c

au
sa

l a
t e

ac
h 

lo
cu

s

d T
he

 M
H

C
 is

 n
ot

 in
cl

ud
ed

 d
ue

 to
 e

xt
en

de
d 

L
D

 a
nd

 g
en

e 
de

ns
ity

 a
t t

he
 lo

cu
s

Nat Genet. Author manuscript; available in PMC 2016 May 18.

http://www.informatics.jax.org/phenotypes.shtml

	Abstract
	ONLINE METHODS
	Data: genome-wide association study (GWAS)
	Data: Hom et al. study
	Data: replication study
	Ethical approval
	Quality control
	Klinefelter’s syndrome
	Analysis: association
	Annotation of results
	Post hoc QC
	Analysis: replication study chip design
	Analysis: 1000 Genomes (1KG) imputation
	Analysis: the MHC and HLA alleles
	Analysis: gene expression data

	References
	Figure 1
	Figure 2
	Table 1
	Table 2

