615 research outputs found

    Peroxiredoxin 4, a novel circulating biomarker for oxidative stress and the risk of incident cardiovascular disease and all-cause mortality

    Get PDF
    BACKGROUND: Oxidative stress has been suggested to play a key role in the development of cardiovascular disease (CVD). The aim of our study was to investigate the associations of serum peroxiredoxin 4 (Prx4), a hydrogen peroxide-degrading peroxidase, with incident CVD and all-cause mortality. We subsequently examined the incremental value of Prx4 for the risk prediction of CVD compared with the Framingham risk score (FRS). METHODS AND RESULTS: We performed Cox regression analyses in 8141 participants without history of CVD (aged 28 to 75 years; women 52.6%) from the Prevention of Renal and Vascular End-stage Disease (PREVEND) study in Groningen, The Netherlands. Serum Prx4 was measured by an immunoluminometric assay in baseline samples. Main outcomes were: (1) incident CVD events or CVD mortality and (2) all-cause mortality during a median follow-up of 10.5 years. In total, 708 participants (7.8%) developed CVD events or CVD mortality, and 517 participants (6.3%) died. Baseline serum Prx4 levels were significantly higher in participants with incident CVD events or CVD mortality and in those who died than in participants who remained free of outcomes (both P<0.001). In multivariable models with adjustment for Framingham risk factors, hazard ratios were 1.16 (95% CI 1.06 to 1.27, P<0.001) for incident CVD events or CVD mortality and 1.17 (95% CI 1.06 to 1.29, P=0.003) for all-cause mortality per doubling of Prx4 levels. After the addition of Prx4 to the FRS, the net reclassification improvement was 2.7% (P=0.01) using 10-year risk categories of CVD. CONCLUSIONS: Elevated serum Prx4 levels are associated with a significantly higher risk of incident CVD events or CVD mortality and all-cause mortality after adjustment for clinical risk factors. The addition of Prx4 to the FRS marginally improved risk prediction of future CVD

    Specific Heat of the 2D Hubbard Model

    Full text link
    Quantum Monte Carlo results for the specific heat c of the two dimensional Hubbard model are presented. At half-filling it was observed that c∌T2c \sim T^2 at very low temperatures. Two distinct features were also identified: a low temperature peak related to the spin degrees of freedom and a higher temperature broad peak related to the charge degrees of freedom. Away from half-filling the spin induced feature slowly disappears as a function of hole doping while the charge feature moves to lower temperature. A comparison with experimental results for the high temperature cuprates is discussed.Comment: 6 pages, RevTex, 11 figures embedded in the text, Submitted to Phys. Rev.

    Model study of adsorbed metallic quantum dots: Na on Cu(111)

    Get PDF
    We model electronic properties of the second monolayer Na adatom islands (quantum dots) on the Cu(111) surface covered homogeneously by the first Na monolayer. An axially-symmetric three-dimensional jellium model, taking into account the effects due to the first Na monolayer and the Cu substrate, has been developed. The electronic structure is solved within the local-density approximation of the density-functional theory using a real-space multigrid method. The model enables the study of systems consisting of thousands of Na-atoms. The results for the local density of states are compared with differential conductance (dI/dVdI/dV) spectra and constant current topographs from Scanning Tunneling Microscopy.Comment: 10 pages, 8 figures. For better quality figures, download http://www.fyslab.hut.fi/~tto/cylart1.pd

    Deep exclusive π+\pi^+ electroproduction off the proton at CLAS

    Get PDF
    The exclusive electroproduction of π+\pi^+ above the resonance region was studied using the CEBAF\rm{CEBAF} Large Acceptance Spectrometer (CLAS\rm{CLAS}) at Jefferson Laboratory by scattering a 6 GeV continuous electron beam off a hydrogen target. The large acceptance and good resolution of CLAS\rm{CLAS}, together with the high luminosity, allowed us to measure the cross section for the γ∗p→nπ+\gamma^* p \to n \pi^+ process in 140 (Q2Q^2, xBx_B, tt) bins: 0.16<xB<0.580.16<x_B<0.58, 1.6 GeV2<^2<Q2Q^2<4.5<4.5 GeV2^2 and 0.1 GeV2<^2<−t-t<5.3<5.3 GeV2^2. For most bins, the statistical accuracy is on the order of a few percent. Differential cross sections are compared to two theoretical models, based either on hadronic (Regge phenomenology) or on partonic (handbag diagram) degrees of freedom. Both can describe the gross features of the data reasonably well, but differ strongly in their ingredients. If the handbag approach can be validated in this kinematical region, our data contain the interesting potential to experimentally access transversity Generalized Parton Distributions.Comment: 18pages, 21figures,2table

    Nuclear transparency from quasielastic A(e,e'p) reactions uo to Q^2=8.1 (GeV/c)^2

    Get PDF
    The quasielastic (e,eâ€Č^\primep) reaction was studied on targets of deuterium, carbon, and iron up to a value of momentum transfer Q2Q^2 of 8.1 (GeV/c)2^2. A nuclear transparency was determined by comparing the data to calculations in the Plane-Wave Impulse Approximation. The dependence of the nuclear transparency on Q2Q^2 and the mass number AA was investigated in a search for the onset of the Color Transparency phenomenon. We find no evidence for the onset of Color Transparency within our range of Q2Q^2. A fit to the world's nuclear transparency data reflects the energy dependence of the free proton-nucleon cross section.Comment: 11 pages, 6 figure

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.1∘3.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38−6+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (69−13+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section

    Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

    Get PDF
    The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluoresence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to author list and references in v
    • 

    corecore