We model electronic properties of the second monolayer Na adatom islands
(quantum dots) on the Cu(111) surface covered homogeneously by the first Na
monolayer. An axially-symmetric three-dimensional jellium model, taking into
account the effects due to the first Na monolayer and the Cu substrate, has
been developed. The electronic structure is solved within the local-density
approximation of the density-functional theory using a real-space multigrid
method. The model enables the study of systems consisting of thousands of
Na-atoms. The results for the local density of states are compared with
differential conductance (dI/dV) spectra and constant current topographs from
Scanning Tunneling Microscopy.Comment: 10 pages, 8 figures. For better quality figures, download
http://www.fyslab.hut.fi/~tto/cylart1.pd