3,950 research outputs found

    Information Transmission under Random Emission Constraints

    Get PDF
    We model the transmission of a message on the complete graph with n vertices and limited resources. The vertices of the graph represent servers that may broadcast the message at random. Each server has a random emission capital that decreases at each emission. Quantities of interest are the number of servers that receive the information before the capital of all the informed servers is exhausted and the exhaustion time. We establish limit theorems (law of large numbers, central limit theorem and large deviation principle), as n tends to infinity, for the proportion of visited vertices before exhaustion and for the total duration. The analysis relies on a construction of the transmission procedure as a dynamical selection of successful nodes in a Galton-Watson tree with respect to the success epochs of the coupon collector problem

    Robust Individual Circadian Parameter Estimation for Biosignal-based Personalisation of Cancer Chronotherapy

    Full text link
    In cancer treatment, chemotherapy is administered according a constant schedule. The chronotherapy approach, considering chronobiological drug delivery, adapts the chemotherapy profile to the circadian rhythms of the human organism. This reduces toxicity effects and at the same time enhances efficiency of chemotherapy. To personalize cancer treatment, chemotherapy profiles have to be further adapted to individual patients. Therefore, we present a new model to represent cycle phenomena in circadian rhythms. The model enables a more precise modelling of the underlying circadian rhythms. In comparison with the standard model, our model delivers better results in all defined quality indices. The new model can be used to adapt the chemotherapy profile efficiently to individual patients. The adaption to individual patients contributes to the aim of personalizing cancer therapy.Comment: Conference Biosig 2016, Berli

    Thermal Infrared Radiometric Calibration of the Entire Landsat 4, 5, and 7 Archive (1982-2010)

    Get PDF
    Landsat's continuing record of the thermal state of the earth's surface represents the only long term (1982 to the present) global record with spatial scales appropriate for human scale studies (i.e., tens of meters). Temperature drives many of the physical and biological processes that impact the global and local environment. As our knowledge of, and interest in, the role of temperature on these processes have grown, the value of Landsat data to monitor trends and process has also grown. The value of the Landsat thermal data archive will continue to grow as we develop more effective ways to study the long term processes and trends affecting the planet. However, in order to take proper advantage of the thermal data, we need to be able to convert the data to surface temperatures. A critical step in this process is to have the entire archive completely and consistently calibrated into absolute radiance so that it can be atmospherically compensated to surface leaving radiance and then to surface radiometric temperature. This paper addresses the methods and procedures that have been used to perform the radiometric calibration of the earliest sizable thermal data set in the archive (Landsat 4 data). The completion of this effort along with the updated calibration of the earlier (1985 1999) Landsat 5 data, also reported here, concludes a comprehensive calibration of the Landsat thermal archive of data from 1982 to the presen

    Large Deviations Analysis for Distributed Algorithms in an Ergodic Markovian Environment

    Get PDF
    We provide a large deviations analysis of deadlock phenomena occurring in distributed systems sharing common resources. In our model transition probabilities of resource allocation and deallocation are time and space dependent. The process is driven by an ergodic Markov chain and is reflected on the boundary of the d-dimensional cube. In the large resource limit, we prove Freidlin-Wentzell estimates, we study the asymptotic of the deadlock time and we show that the quasi-potential is a viscosity solution of a Hamilton-Jacobi equation with a Neumann boundary condition. We give a complete analysis of the colliding 2-stacks problem and show an example where the system has a stable attractor which is a limit cycle

    Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays

    Get PDF
    We report the first reconstruction in hadron collisions of the suppressed decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by the CDF II detector at the Tevatron collider. We reconstruct a signal for the B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard deviations, and measure the ratios of the suppressed to favored branching fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) = [42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm 2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) = -0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for Publicatio

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    How do professions globalize? Lessons from the Global South in US medical education

    Get PDF
    This article explores the professional construction of the space of Global Health. I argue that the growth of Global Health as a field of practice does not merely indicate an intensification of North-South intervention. It is also a professional project of reimporting lessons from the South to countries in the North. I focus on the emerging didactic regime for Global Health in US medical education and the deterritorialized "global" lessons that students are taught in poor countries. By rescaling these lessons to precarious settings at home, the space of Global Health is reterritorialized as a Global Medical South stretching into the United States, reinforcing the perception that health is not a right but a privilege. The analysis is based on a content analysis of university websites and didactic handbooks and a sample of sixty-four articles evaluating the education effects of study abroad experiences. It reveals an emerging canon of Global Health virtues and the construction of domestic scales for Global Health practices, which are based on ethnic and socioeconomic categories. This analysis of professional projects as spatial projects sheds new light on the geography of Global Health and of professional globalization more generally

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore