
Large Deviations Analysis for Distributed Algorithms in

an Ergodic Markovian Environment

Francis Comets, François Delarue, René Schott
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Abstract

We provide a large deviations analysis of deadlock phenomena occurring in dis-
tributed systems sharing common resources. In our model transition probabilities
of resource allocation and deallocation are time and space dependent. The process
is driven by an ergodic Markov chain and is reflected on the boundary of the d-
dimensional cube. In the large resource limit, we prove Freidlin-Wentzell estimates,
we study the asymptotic of the deadlock time and we show that the quasi-potential
is a viscosity solution of a Hamilton-Jacobi equation with a Neumann boundary
condition. We give a complete analysis of the colliding 2-stacks problem and show
an example where the system has a stable attractor which is a limit cycle.
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1 Introduction

Distributed algorithms are related to resource sharing problems. Colliding stacks prob-
lems and the banker algorithm are among the examples which have attracted large in-
terest over the last decades in the context of deadlock prevention on multiprocessor
systems. Knuth [22], Yao [32], Flajolet [15], Louchard, Schott et al. [26, 27, 28] have
provided combinatorial or probabilistic analysis of these algorithms in the 2-dimensional
case under the assumption that transition probabilities (of allocation or deallocation) are
constant. Maier [29] proposed a large deviations analysis of colliding stacks for the more
difficult case where the transition probabilities are non-trivially state-dependent. More
recently Guillotin-Plantard and Schott [17, 18] analyzed a model of exhaustion of shared
resources where allocation and deallocation requests are modeled by time-dependent dy-
namic random walks. In [8], the present authors provided a probabilistic analysis of
the d-dimensional banker algorithm when transition probabilities evolve, as time goes
by, along the trajectory of an ergodic Markovian environment, whereas the spatial pa-
rameter just acts on long runs. The analysis in [8] relies on techniques from stochastic
homogenization theory. In this paper, we consider a similar dynamics, but in a stable
regime instead of a neutral regime as in our previous paper, and we provide an orig-
inal large deviations analysis in the framework of Freidlin-Wentzell theory. Given the
environment, the process of interest is a Markov process depending on the number m
of available resource, with smaller and more frequent jumps as m → ∞, see (3.1). A
number of monographs and papers have been written on this theory: [14], [16] and [19]
for random environment, [10], [12], [21] and [20] for reflected processes, [3], [9] and [30] for
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homogeneous Markov processes. However, our framework, including both reflections on
the boundary and averaging on the Markovian environment, is not covered by the current
literature, and we establish here the large deviations principle. We prove that the time
of resource exhaustion then grows exponentially with the size of the system – instead of
polynomially in the neutral regime of [8]– and has exponential law as limit distribution.
Then, we study the quasi-potential, which solves, according to general wisdom, some
Hamilton-Jacobi equation: in view of the reflection on the hypercube, which boundary
is non-regular, we prove this fact in the framework of viscosity solution, and study the
optimal paths (so-called instantons).

We investigate in details a particular situation introduced in a beautiful paper of Maier
[29], where the motion in each direction depends on the corresponding coordinate only,
with the additional dependence in the Markovian environment. In fact, we discover the
quasi-potential by observing that the discrete process has an invariant measure, for which
we study the large deviations properties. We can then use the characterization in terms
of Hamilton-Jacobi equation to bypass the Hamiltonian mechanics approach of [29]. For
the deadlock phenomenon, we finally obtain a (even more) complete picture (after an
even shorter work). To the best of our knowledge, this is first such analysis developed
for space-time inhomogeneous distributed algorithms.

The organization of this paper is as follows: we discuss our probabilistic model in
Section 2. In Section 3 we prove a Large Deviations Principle. Deadlock phenomenon
analysis is done rigorously with much details in Section 4. In Section 5 we illustrate with
the two-stacks model. In Section 6 we work out an example where the system has (in
the large scale resource limit m → ∞) a stable attractor which is a limit cycle. Some
technical proofs of results stated in Section 4 are deferred to Appendix (Section 7).

2 The Model

The environment is given by a Markov chain (ξn)n≥0 defined on (Ω,A,P) with values in
a finite space E, N = |E|. We denote by P its transition matrix, P (k, ℓ) = P(ξn+1 =
ℓ|ξn = k) for k, ℓ ∈ E.

The steps of the walker take place in the set

V = {e1,−e1, . . . , ed,−ed} ,

where (ei)1≤i≤d denotes the canonical basis of Z
d, and are reflected along the boundary

of the hypercube [0, m]d, for a large integer m.
Following [8], we first discuss the dynamics of the walk in the non-reflected setting.

The displacement of the walker has then law (p(s/m, i, v); v ∈ V), when located at s and
when the environment is i. To obtain a stochastic representation – which is, in contrast
to [8], needed here – , we are also given, on (Ω,A,P), a sequence (Un)n≥0 of independent
and uniformly distributed random variables on (0, 1), independent of the family (ξn)n≥0.
Denoting by f : (s, i, v) ∈ R

d×E × (0, 1) → V the inverse of the cumulative distribution
function of (p(s, i, u))u∈V (for an arbitrary order on V), we have

P{f(s, i, Un) = v} = p(s, i, v) ,
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so that the position of the walker can be defined recursively by

Sn+1 = Sn + f(Sn/m, ξn, Un). (2.1)

The reflected walk is obtained by symmetry with respect to the faces of the hypercube.
Denoting by Id the identity mapping on R

d and by Π (resp. Π(m)) the projection on the
hypercube [0, 1]d (resp. [0, m]d), we define recursively the position of the walker by

Xn+1 = (2Π(m) − Id)
(

Xn + f(Xn/m, ξn, Un)
)

= m(2Π − Id)
(

Xn/m+ (1/m)f(Xn/m, ξn, Un)
)

.
(2.2)

When Xn is on the boundary and Xn + f(Xn/m, ξn, Un) is outside the hypercube, Xn+1

is the symmetric point of Xn + f(Xn, ξn, Un) with respect to the face containing Xn and
orthogonal to f(Xn/m, ξn, Un), i.e. Xn+1 = Xn − f(Xn/m, ξn, Un). The kernel q of the
walk (Xn)n≥1 has the following form. When located at x ∈ (0, m)d ∩ Z

d and when the
environment is i, the jump of the walker has law (q(x/m, i, v) = p(x/m, i, v); v ∈ V). On
the boundary, the reflection rules may be expressed as follows: if xℓ/m = 1 (xℓ is the ℓth
coordinate of x), q(x/m, i, eℓ) = 0 and q(x/m, i,−eℓ) = p(x/m, i, eℓ) + p(x/m, i,−eℓ) ; if
xℓ = 0, q(x/m, i,−eℓ) = 0 and q(x/m, i,−eℓ) = p(x/m, i, eℓ) + p(x/m, i,−eℓ).

We could choose another reflection rule by setting Xn+1 = Π(m)(Xn+f(Xn/m, ξn, Un)).
Such a choice wouldn’t change anything to the proofs given in the paper, except the proof
of Theorem 4.9 which uses the fact that the steps of (Xn)n≥0 are always non-zero.

Following (2.1), we can write

Xn+1 = Xn + g(Xn/m, ξn, Un) , (2.3)

where g : (x, i, v) ∈ R
d×E×(0, 1) → V is the inverse of the cumulative distribution func-

tion of (q(x, i, u))u∈V . Of course, g(x, i, v) = f(x, i, v) for x ∈ (0, 1)d. On the boundary,
xℓ = 1 ⇒ gℓ(x, i, v) ≤ 0 and xℓ = 0 ⇒ gℓ(x, i, v) ≥ 0.

The process (ξn, Xn)n≥0 is a Markov chain with transition probabilities

P
{

ξn+1 = k,Xn+1 = v +Xn|F
ξ,X
n

}

= P (ξn, k)q(Xn/m, ξn, v),

where F ξ,X
n = σ{ξ0, . . . , ξn, X0, . . . , Xn}. In particular, for x ∈ Z

d and for a probability
measure ν on E, we can write P

ν
x/m to indicate that the chain starts under the measure

δx ⊗ ν. In many cases, we just write Px/m (resp. P
ν): this means that the law of the

environment (resp. of the walker) is arbitrary. And, of course, the notation P means that
both the initial conditions of the walker and of the environment are arbitrary.

2.1 Main Assumptions

In the whole paper, 〈·, ·〉 and | · | stand for the Euclidean scalar product and the Euclidean
norm in R

d. The symbols | · |1 and | · |∞ denote the standard ℓ1 and ℓ∞ norms in R
d.

From a purely practical point of view, the values of p(x, i, v) for x outside the hypercube
[0, 1]d are totally useless. In the sequel, we refer, for pedagogical reasons, to the non-
reflected walk: in such cases, we need p(x, i, v) to be defined for all x ∈ R

d. This is the
reason why the variable x lies in R

d in the following assumptions.
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In formulas (2.1) and (2.2), the division by m indicates that the dependence of the
transition kernel on the position of the walker takes place at scale m. For large m,
the space dependence is mild, since we will assume all through the paper the following
smoothness property:

Assumption (A.1). There exists a finite constant K such that |p(x, i, v) − p(y, i, v)| ≤
K|x− y|, x, y ∈ R

d, i ∈ E, v ∈ V.

For technical reasons, which are explained in the paper, we impose the following ellip-
ticity condition:

Assumption (A.2). For all x ∈ R
d, i ∈ E and v ∈ V, p(x, i, v) > 0. By continuity,

inf{p(x, i, v); x ∈ [0, 1]d, i ∈ E, v ∈ V} > 0.

We also assume the environment to be ergodic and to obey the large deviations principle
for Markov chains. We thus impose the following sufficient conditions:

Assumption (A.3). The matrix P is irreducible on E. Its unique invariant probability
measure is denoted by µ.

In particular, the following vector-valued function is smooth:

f̄(x) = E
µf(x, ξ, U) =

∑

v∈V

v E
µp(x, ξ, v) , x ∈ R

d ; (2.4)

the above expectations are taken over independent variables ξ, U , where ξ has the distri-
bution µ and U is uniformly distributed on [0,1].

For the deadlock time analysis, another assumption will be necessary (see (A.4) in
Section 4).

2.2 Continuous Counterpart and Skorohod Problem

Because of the reflection phenomenon, we briefly recall what the Skorohod problem is
(we refer to [23] for a complete overview of the subject). For each continuous mapping
w : t ∈ [0,+∞) 7→ wt ∈ R

d, with w0 ∈ [0, 1]d, there exists a unique continuous mapping
t ∈ [0,+∞) 7→ (xt, kt) ∈ [0, 1]d × R

d, with k of bounded variation on any bounded sets,
such that:

∀t ≥ 0 , wt = xt + kt , kt =

∫ t

0

nsd|k|s , |k|t =

∫ t

0

1{xs∈∂[0,1]d}d|k|s , (2.5)

where ns ∈ N (xs), N (x) denoting for x ∈ ∂[0, 1]d the set of unit outward normals to
∂[0, 1]d at x, that is

N (x) = {v ∈ R
d : |v| = 1, vℓ = 0 if xℓ ∈ (0, 1), vℓ ≤ 0 if xℓ = 0, vℓ ≥ 0 if xℓ = 1}.

When x is in the relative interior of a face of the hypercube, N (x) is obviously empty.
It can be proved (see again [23]) that, for every T > 0, the mapping Ψ : (wt)0≤t≤T 7→

(xt)0≤t≤T is continuous from C[0,1]d([0, T ]; Rd) into itself with respect to the supremum
norm (it is even 1/2-Hölder continuous on compact subsets of C[0,1]d([0, T ]; Rd)); here
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and below, CA([0, T ]; Rd) denotes the set of continuous functions from [0, T ] to R
d with

an initial datum in A. Moreover, if w is absolutely continuous, then x and k are also
absolutely continuous (see [23, Theorem 2.2]).

Equation (2.2) corresponds to a Euler scheme for a Reflected Differential Equation
(RDE in short). An RDE is an ordinary differential equation, but driven by a push-
ing process k as in (2.5). For a given initial condition x0 ∈ [0, 1]d and a given jointly
measurable and x-Lipschitz continuous mapping b : R+ × [0, 1]d → R

d, the RDE

∀T > 0, (xt)0≤t≤T = Ψ

[(

x0 +

∫ t

0

b(s, xs)ds

)

0≤t≤T

]

, (2.6)

admits a unique solution (see again [23]). This solution satisfies the equation

∀t ≥ 0, xt = x0 +

∫ t

0

b(s, xs)ds− kt ,

with k as in (2.5). In this case, x and k are absolutely continuous.
Reflected equations driven by Lipschitz continuous coefficients are stable. By [23,

Lemma 3.1], we can prove that for every T > 0, there exists a constant CT ≥ 0, such
that, for any x0, y0 ∈ [0, 1]d, the solutions (xt)0≤t≤T and (yt)0≤t≤T to (2.6) with x0 and y0

as initial conditions satisfy sup0≤t≤T |xt − yt| ≤ CT |x0 − y0|.
When b(s, x) = f̄(x), we denote by (χx0

t )t≥0 the unique solution to the averaged reflected
differential equation

∀t ≥ 0, xt = x0 +

∫ t

0

f̄(xs)ds− kt. (2.7)

3 Large Deviations Principle

We now denote the process X by X(m) to indicate the dependence on the parameter m. In
what follows, we investigate an interpolated version of the rescaled process (m−1X

(m)
⌊mt⌋)t≥0,

namely

X̄
(m)
t = (2Π − Id)

(

m−1X
(m)
⌊mt⌋ + (t−m−1⌊mt⌋)f(m−1X

(m)
⌊mt⌋, ξ⌊mt⌋, U⌊mt⌋)

)

, t ≥ 0

= m−1X
(m)
⌊mt⌋ + (t−m−1⌊mt⌋)g(m−1X

(m)
⌊mt⌋, ξ⌊mt⌋, U⌊mt⌋) , t ≥ 0 (3.1)

We note that the hyperbolic scaling is different from the diffusive scaling in [8]. The

process (X̄
(m)
t )t≥0 is continuous and X̄

(m)
k/m = X

(m)
k for any integer k ∈ N.

3.1 Heuristics for the Non-reflected Walk

We first look, for pedagogical reasons, at the non-reflected case. We thus consider

S̄
(m)
t = m−1S

(m)
⌊mt⌋ + (t−m−1⌊mt⌋)f(m−1S⌊mt⌋, ξ⌊mt⌋, U⌊mt⌋) , t ≥ 0 .

(As for X, we indicate the dependence on m in S.) In light of Assumptions (A.1–3),
we expect the global effect of the environment process (ξn)n≥0 to reduce for large time
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to a deterministic one. More precisely, if the initial position is such that S̄
(m)
0 → x as

m → ∞, we expect (S̄(m))m≥1 to converge in probability, uniformly on compact sets, to
the solution x· of the (averaged) ordinary differential equation

ẋt = f̄(xt) , x0 = x , (3.2)

that is limm→∞ ρ0,T (S̄
(m)
· , x·) = 0 for all T > 0, where ρ0,T (φ, ψ) = sup{|φt − ψt|; t ∈

[0, T ]} denotes the distance in supremum norm on the space C([0, T ]; Rd) of continuous
functions from [0, T ] into R

d.

Loosely speaking, the Large Deviations Principle (LDP in short) for (S̄
(m)
· )m≥1 follows

from the Freidlin and Wentzell theory [16, Chapter 7], or at least from a variant of it as
explained below. The idea is the following. The irreducible Markov chain (ξn)n≥0 with a
finite state space obeys a LDP (see [9, Theorem 3.1.2, Exercise 3.1.4]). In particular, the
function H defined for x, α ∈ R

d by

H(x, α) = lim
n→∞

1

n
ln E

i exp
〈

α,

n
∑

k=1

f(x, ξk, Uk)〉 (3.3)

= lim
n→∞

1

n
ln E

i
n

∏

k=1

[

∑

v∈V

e〈α,v〉p(x, ξk, v)

]

,

exists and is independent of the starting point ξ0 = i ∈ E. Here, E
i denotes expectation

over (ξk, Uk) starting with ξ0 = i, and the last equality is a direct integration on the i.i.d.
sequence (Un)n≥1. From assumption (A.1) and finiteness of E, the limit is uniform in
x , α on compact subsets of R

d and in i ∈ E.
In fact, H(x, α) is equal to the logarithm of the Perron-Frobenius eigenvalue (e.g., [9,

Theorem 3.1.1, Exercise 3.1.4]) of the matrix

Q(x, α) =
[

P (i, j)Ee〈α,f(x,i,U)〉
]

(i,j)∈E×E
. (3.4)

Since the entries of the above matrix are regular and the leading eigenvalue is simple, H
is continuous in x and infinitely differentiable in α. For x, v ∈ R

d, the Legendre transform
of H(x, ·)

L(x, v) = sup{〈α, v〉 −H(x, α); α ∈ R
d} (3.5)

is non-negative and convex in v. It is even strictly convex, in view of the differentiability
of H(x, ·) (see [16, Chapter 5, (1.8)]). In particular for all x ∈ R

d, f̄(x) = ∇αH(x, 0) is
the unique zero of L(x, ·). Since |H(x, α)| ≤ |α| for all x, α ∈ R

d, we have (v ∈ R
d, |v| >

1) ⇒ L(x, v) = +∞.
In some sense, the convergence in (3.3) corresponds to [16, Chapter 7, Lemma 4.3]. By

the regularity of H , we expect [16, Chapter 7, Theorem 4.1] to hold in our framework.
For x ∈ R

d and for a sequence (xm)m≥1 converging towards x, with mxm ∈ Z
d for all

m ≥ 1, we expect (S̄
(m)
· )m≥1 to satisfy a LDP with m as normalizing coefficient and with

the following action functional

I0,T (φ) =

∫ T

0

L(φs, φ̇s)ds if φ0 = x and φ is absolutely continuous

= ∞ otherwise.
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3.2 Large Deviations Principle for the Reflected Walk

We now prove the LDP for the reflected walk. Generally speaking, it follows from the
LDP for the process S̄

(m)
· and from the contraction principle (see e.g. [9, Theorem 4.2.1,

p. 126]). For this reason, we have first to make rigorous the previous paragraph. In
what follows, we will see that the theory of Freidlin and Wentzell cannot be applied in a
straight way. Indeed, for our own purpose (see the next section for the application to the
deadlock time problem), we are seeking for uniform large deviations bounds with respect
to the starting point. In [16], the authors obtain uniform bounds for systems driven by a
Lipschitz continuous field f . Since our own f takes its values in a discrete set, it cannot
be continuous.

To overcome the lack of regularity of f , we follow the approach of Dupuis [11]. The idea
is to use a “uniform” version of the Gärtner-Ellis theorem to obtain uniform bounds (see
[9, Theorem 2.3.6] for the original version of the Gärtner-Ellis theorem). More precisely,

we follow Section 5 in [11]. In this framework, we emphasize that (X̄
(m)
t )t≥0 is 1-Lipschitz

continuous (in time) and adapted to the filtration (G(m)
t = σ(ξk, Uk, k ≤ ⌊tm⌋))t≥0. We

consider the non-projected and projected versions

Y
(m)
t = Y

(m)
k/m + (t− k/m)f(X̄

(m)
k/m, ξk, Uk) ,

Z
(m)
t = Π

(

Z
(m)
k/m + (t− k/m)f(X̄

(m)
k/m, ξk, Uk)

)

,

with Y
(m)
0 = Z

(m)
0 = X̄

(m)
0 . They are also 1-Lipschitz continuous in time and adapted to

(G(m)
t )t≥0. We let the reader check that, for all t ≥ 0, |Z(m)

t − X̄
(m)
t |∞ ≤ 1/m. Moreover,

for t ∈ [k/m, (k + 1)/m),

Z
(m)
t = Z

(m)
k/m + Y

(m)
t − Y

(m)
k/m −

[

K
(m)
t −K

(m)
k/m

]

,

K
(m)
t −K

(m)
k/m =

(

Z
(m)
k/m + Y

(m)
t − Y

(m)
k/m

)

− Π
(

Z
(m)
k/m + Y

(m)
t − Y

(m)
k/m

)

,

with K
(m)
0 = 0. Summing over k, we have Z

(m)
t = Y

(m)
t −K

(m)
t . The process K(m) is of

bounded variation on compact sets. If Z
(m)
k/m ∈ (0, 1)d, K

(m)
t −K

(m)
k/m = 0 for k/m ≤ t <

(k + 1)/m. Otherwise, Z
(m)
k/m ∈ ∂[0, 1]d and K

(m)
t −K

(m)
k/m ∈ R+N (Z

(m)
k/m) = R+N (Z

(m)
t ).

We deduce that Z(m) is nothing but Ψ(Y (m)) (Ψ being the Skorohod mapping). Since
Z(m) and X̄(m) are close, it is sufficient to establish the LDP for Y (m) and to conclude by
the contraction principle,.

The LDP for Y (m) follows from [11, Theorem 3.2] (up to a slight modification of the
proof). Indeed, we can write

Y
(m)
t = Y

(m)
k/m + (t− k/m)f

(

Ψ(Y (m))k/m + ε
(m)
k/m, ξk, Uk

)

, k/m ≤ t < (k + 1)/m , (3.6)

with |ε(m)
k/m|∞ ≤ 1/m. This form is the analogue of the writing obtained in [11, p. 1532]

for X̃ε
n. In (3.6), we can choose an arbitrary initial condition y ∈ [0, 1]d for Y (m) (it is

not necessary to assume that my ∈ Z
d). Similarly, we choose an arbitrary starting point

i ∈ E for ξ. To establish the LDP, we have to check Assumptions A1 and A3 in [11]. In
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our framework, A1 is clearly satisfied. We investigate A3. We first prove that H is x-
Lipschitz continuous, uniformly in α (so that L is also x-Lipschitz continuous, uniformly
in v). For x ∈ R

d, α ∈ R
d and j ∈ E, we set

H0(x, α; j) = ln
(

∑

v∈V

exp(〈α, v〉)p(x, j, v)
)

.

By (A.1) and (A.2), H0 is x-Lipschitz continuous (uniformly in α and j). The Lipschitz
constant is denoted by K ′. By (3.3), we obtain for x, y in R

d and α ∈ R
d

H(x, α) −H(y, α)

= lim
n→+∞

1

n

{

ln E
j
[

exp
(

n
∑

k=1

H0(x, α; ξk)
)]

− ln E
j
[

exp
(

n
∑

k=1

H0(y, α; ξk)
)]}

≤ K ′|x− y|.

It remains to estimate the conditional law of the increments of Y (m) given the past.
For a given t > 0, we consider a 1-Lipschitz continuous function φ ∈ C([0, t]; Rd),
with φ0 ∈ [0, 1]d. From Subsection 2.2, we know that Ψ is 1/2-Hölder continuous on
compact subsets of C[0,1]d([0, t]; R

d), so that we can find a constant γ > 0 such that

ρ0,t(Ψ(Y (m)),Ψ(φ)) ≤ γρ
1/2
0,t (Y (m), φ). For α ∈ R

d, δ,∆ > 0 and A ∈ Gmt , with P(A) 6= 0

and A ⊂ {ρ0,t(Y
(m), φ) ≤ δ} (so that A ⊂ {ρ0,t(Ψ(Y (m)),Ψ(φ)) ≤ γδ1/2}), we have

E
i
[

exp
(

m〈α, Y (m)
t+∆ − Y

(m)
t 〉

)

|A
]

≤ e2|α|Ei

[

exp
(

⌊(t+∆)m⌋
∑

k=⌊tm⌋+1

〈α, f(X̄
(m)
k/m, ξk, Uk)〉

)

|A

]

= e2|α|Ei

[

exp
(

⌊(t+∆)m⌋−1
∑

k=⌊tm⌋+1

〈α, f(X̄
(m)
k/m, ξk, Uk)〉

)

exp
(

H0(X̄
(m)
⌊(t+∆)m⌋/m, α; ξ⌊(t+∆)m⌋)

)

|A

]

≤ e2|α| exp(K ′∆)Ei

[

exp
(

⌊(t+∆)m⌋−1
∑

k=⌊tm⌋+1

〈α, f(X̄
(m)
t , ξk, Uk)〉

)

exp
(

H0(X̄
(m)
t , α; ξ⌊(t+∆)m⌋)

)

|A

]

By iterating the procedure, we obtain

E
i
[

exp
(

m〈α, Y (m)
t+∆ − Y

(m)
t 〉

)

|A
]

≤ e2|α| exp(K ′∆2m)Ei

[

exp
(

⌊(t+∆)m⌋
∑

k=⌊tm⌋+1

H0(X̄
(m)
t , α; ξk)

)

|A

]

≤ e2|α| exp(K ′∆(∆2m+ 1))Ei

[

exp
(

⌊(t+∆)m⌋
∑

k=⌊tm⌋+1

H0(Z
(m)
t , α; ξk)

)

|A

]

≤ e2|α| exp(K ′∆(∆ + γδ1/2 + 1/m)m)Ei

[

exp
(

⌊(t+∆)m⌋
∑

k=⌊tm⌋+1

H0(Ψ(φ)t, α; ξk)
)

|A

]

≤ e4|α| exp(K ′∆(∆ + γδ1/2 + 1/m)m) sup
j∈E

E
j

[

exp
(

⌊∆m⌋
∑

k=0

〈α, f(Ψ(φ)t, ξk, Uk)〉
)

]

.
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We deduce that, uniformly in the starting points y and i, uniformly in α on compact
subsets and uniformly in (A, φ) satisfying A ⊂ {ρ0,t(Y

(m), φ) ≤ δ}

lim sup
m→+∞

1/(m∆) ln E
i
[

exp
(

m〈α, Y (m)
t+∆ − Y

(m)
t 〉

)

|A
]

≤ H(Ψ(φ)t, α) + 2K ′(∆ + γδ1/2).

Similarly, we can prove a lower bound for the liminf. Even if written in a different manner
(because of the Skorohod mapping Ψ and because of the conditioning – we give a precise
sense to the right-hand side in [11, A3, (3.6), (3.7)] – ), these two bounds correspond to
those required in Assumption A3 in [11] (see the discussion on this point in [11, Section
5]).

We deduce that the sequence (Y (m))m≥1 satisfies on Cy([0, T ]; Rd) (T > 0) a LDP with

the normalizing factor m and with the action functional Iy0,T : φ 7→
∫ T

0
L(Ψ(φ)t, φ̇t)dt if

φ0 = y and φ is absolutely continuous and ∞ otherwise. We let the reader check that this
action functional is lower semicontinuous on C[0,1]d([0, T ]; Rd) and that its level sets are
compact for the supremum norm topology. By the “robust” version of the Gärtner-Ellis
proved in [11], the LDP is uniform in y ∈ [0, 1]d.

The uniformity of the LDP with respect to the initial condition is crucial. By the
regularity of L in x (it is Lipschitz continuous, uniformly in α), it is plain to deduce
that for any x ∈ [0, 1]d, for any closed subset F ∈ C[0,1]d([0, T ]; Rd) and any open subset
G ∈ C[0,1]d([0, T ]; Rd)

lim
δց0

sup
|y−x|<δ

lim sup
m→+∞

m−1 ln P
{

Y (m),y ∈ F
}

≤ − inf
φ∈F

Ix0,T (φ),

lim
δց0

inf
|y−x|<δ

lim inf
m→+∞

m−1 ln P
{

Y (m),y ∈ G
}

≥ − inf
φ∈G

Ix0,T (φ),
(3.7)

where the notation Y (m),y indicates that Y (m) starts from y (i.e. Y
(m),y
0 = y).

By the contraction principle (see e.g. [9, Theorem 4.2.1, p. 126]), for any y ∈ [0, 1]d,
(Ψ(Y (m)))m≥1 satisfies on Cy([0, T ]; Rd) a LDP with m as normalizing factor and with the
following action functional

Jy0,T (φ) = inf

{
∫ T

0

L(Ψ(ψ)s, ψ̇s)ds, Ψ(ψ) = φ

}

= inf

{
∫ T

0

L(φs, ψ̇s)ds, Ψ(ψ) = φ

}

,

(3.8)
if φ0 = y and there is an absolutely continuous path ψ such that Ψ(ψ) = φ, and Jy0,T (φ) =
∞ otherwise.

Let us mention at this point that an alternative, more explicit expression of Jy0,T will
be given below. Again, the action functional Jy0,T is lower semicontinuous on the set

C[0,1]d([0, T ]; [0, 1]d). The proof is rather standard and is left to the reader. We can also
prove that the level sets Jy,T (a) = {φ ∈ Cy([0, T ]; Rd) : Jy0,T (φ) ≤ a}, for y ∈ [0, 1]d, are

compact in the supremum norm topology. Moreover, (3.7) yields for any x ∈ [0, 1]d

lim
δց0

sup
|y−x|<δ

lim sup
m→+∞

m−1 ln P
{

Ψ(Y (m),y) ∈ F
}

≤ − inf
φ∈F

Jx0,T (φ),

lim
δց0

inf
|y−x|<δ

lim inf
m→+∞

m−1 ln P
{

Ψ(Y (m),y) ∈ G
}

≥ − inf
φ∈G

Jx0,Tφ),
(3.9)
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Now, we can come back to the sequence (X̄(m))m≥1. For a sequence (xm)m≥1 of initial

conditions in [0, 1]d, withmxm ∈ Z
d and xm → x, we have |X̄(m),xm

t −Ψ(Y
(m),xm

t )|∞ ≤ 1/m
for all t. By (3.9), we deduce

Theorem 3.1 Assume that (A.1–3) are in force and consider T > 0, x ∈ [0, 1]d and a
sequence (xm)m≥1 converging towards x, with mxm ∈ [0, m]d ∩ Z

d for all m ≥ 1. Then,
the sequence (X̄(m)) satisfies on C([0, T ]; [0, 1]d) a LDP with m as normalizing factor and
Jx0,T as action functional.

Following the proof of [9, Corollary 5.6.15], we deduce from (3.9) the following “robust”
version (the word “robust” indicates that the bounds are uniform with respect to the
initial condition)

Proposition 3.2 Assume that (A.1–3) are in force and consider T > 0 and K a com-
pact subset of [0, 1]d. Then, for any closed subset F of C([0, T ], [0, 1]d) and any open
subset G of C([0, T ], [0, 1]d),

lim sup
m→+∞

[

m−1 ln sup
x∈K,mx∈Zd

Px{X̄
(m) ∈ F}

]

≤ − inf
x∈K

inf
φ∈F

Jx0,T (φ),

lim inf
m→+∞

[

m−1 ln inf
x∈K,mx∈Zd

Px{X̄
(m) ∈ G}

]

≥ − sup
x∈K

inf
φ∈G

Jx0,T (φ).

3.3 Law of Large Numbers for the Reflected Walk

We discuss now the zeros of the action functional. We first consider the solution (χx0
t )t≥0,

x0 ∈ [0, 1]d, to (2.7). Setting

∀t ≥ 0, yt = x0 +

∫ t

0

f̄(χx0
s )ds,

we have, for T > 0, (χx0
t )0≤t≤T = Ψ((yt)0≤t≤T ). Since the path t ∈ R+ 7→ yt is absolutely

continuous, we deduce

Jx0
0,T (χx0) ≤

∫ T

0

L
(

ys, f̄(ys)
)

ds = 0,

so that χx0 is a zero of Jx0
0,T . In fact, this is the only possible zero for the given initial

condition x0. Consider indeed another path φ with values in [0, 1]d, such that Jx0
0,T (φ) = 0.

The set of absolutely continuous functions ψ such that ψ0 = x0,

∫ T

0

L(φs, ψ̇s)ds ≤ 1 and Ψ(ψ) = φ,

is compact. Since the functional ψ 7→
∫ T

0
L(φs, ψ̇s)ds is lower semicontinuous, it attains

its infimum on this compact set. Hence, there exists an absolutely continuous function ψ
such that ψ0 = x0 and

∫ T

0

L(φs, ψ̇s)ds = 0 and Ψ(ψ) = φ.
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It is clear that ψ̇t = f̄(φt). Since Ψ(ψ) = φ, there exists a process k as in (2.7) such that

∀t ∈ [0, T ], φt = x0 +

∫ t

0

f̄(φs)ds− kt.

This proves that φ = χx0 up to time T .
A direct consequence is the following

Corollary 3.3 Assume that (A.1–3) are in force and consider a sequence (xm)m≥1 in
[0, 1]d, with mxm ∈ Z

d for all m ≥ 1, such that xm → x as m→ +∞. Then, the sequence

of random paths (X̄(m))m≥1, with X̄
(m)
0 = x for all m ≥ 1, converges, in probability,

uniformly on compact time intervals to the solution (χxt )t≥0 of the (averaged) reflected
differential equation (2.7), with χx0 = x.

3.4 A Different Expression for the Action Functional

Following [10], we write the action functional J0,T in a different way. We recall that N (x)
denotes the set of unit outward normals to ∂[0, 1]d at a point x on the boundary. We
define the function Lref by Lref(x, ·) = L(x, ·) for x ∈ (0, 1)d, and for x ∈ ∂[0, 1]d,

Lref(x, v) =











+∞ if ∃n ∈ N (x) : 〈v, n〉 > 0
L(x, v) if ∀n ∈ N (x) : 〈v, n〉 < 0

inf
β≥0,n∈N (x),n⊥v

L(x, v + βn) otherwise
(3.10)

The last case occurs when 〈v, n〉 ≤ 0 ∀n ∈ N (x) and ∃n′ ∈ N (x) : 〈v, n′〉 = 0. Then, the
motion takes place on the boundary, in the sense that, for ǫ > 0 small enough, x + ǫv
remains in the face orthogonal to n′. Observe that, in contrast to L(x, ·), the function
Lref(x, ·) may be non convex and discontinuous for x ∈ ∂[0, 1]d.

Theorem 3.4 Assume that (A.1–3) are in force. If φ is absolutely continuous it holds

Jφ0

0,T (φ) =

∫ T

0

Lref(φt, φ̇t)dt.

If φ is not absolutely continuous, then Jφ0

0,T (φ) = ∞.

� By Theorem 2.2 in [23], we know that Ψ(ψ) is absolutely continuous if ψ is abso-
lutely continuous. In particular, if φ is not absolutely continuous, there cannot exist an
absolutely continuous ψ such that Ψ(ψ) = φ.

Assume now that φ is absolutely continuous. Then, there exists at least one absolutely
continuous path ψ such that Ψ(ψ) = φ, namely φ itself with k = 0. We thus denote by
ψ an absolutely continuous path such that φ = Ψ(ψ) and set k = ψ − φ. Then k is also
absolutely continuous and k̇t = βtnt with βt = d|k|t/dt ≥ 0 (= 0 if φt 6∈ ∂[0, 1]d) and
nt ∈ N (φt) if φt ∈ ∂[0, 1]d. Moreover, for a.e. t, for all ℓ ∈ {1, . . . , d}, (φ̇t)ℓ1{(φt)ℓ∈{0,1}} = 0

so that φ̇t ⊥ k̇t. Hence

∫ T

0

L(φt, ψ̇t)dt ≥

∫ T

0

Lref(φt, φ̇t)dt.
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This proves that

J0,T (ϕ) ≥

∫ T

0

Lref(φt, φ̇t)dt.

We investigate the converse inequality. If the right-hand side is infinite, the proof is over.
Thus, we can assume that it is finite, in particular Lref(φt, φ̇t) < ∞ for almost every
t ∈ [0, T ]. It is enough to construct some ψ with Ψ(ψ) = φ and L(φt, ψ̇t) = Lref(φt, φ̇t)
a.e.. For times t’s when φt ∈ ∂[0, 1]d and Lref(φt, φ̇t) < ∞ is given by the last line of
(3.10), the infimum is achieved at some pair βt ≥ 0, nt ∈ N (φt) (this pair is unique by
the strict convexity of L). Since H(x, α) is bounded by |α|, |v| > 1 ⇒ L(x, v) = +∞.
We deduce that |φ̇t + βtnt| ≤ 1, so that |βt| ≤ 1 + |φ̇t|. For other times t, set βt = 0, nt
arbitrary. The mapping t ∈ [0, T ] 7→ βt is clearly measurable and integrable. Hence, we
can define ψ̇t = φ̇t + βtnt, ψ0 = φ0 and ψt = ψ0 +

∫ t

0
ψ̇sds. The function ψ meets all our

requirements.

4 Analysis of the Deadlock Phenomenon

We now investigate the deadlock time of the algorithm. Fixing a real number ℓ ∈ (0, d),
we define

G = {x ∈ [0, 1]d : |x|1 < ℓ} , and ∂G = {x ∈ [0, 1]d : |x|1 = ℓ} (4.11)

its boundary relative to [0, 1]d. We also define the discrete counterparts at scale m,
G(m) = {x ∈ (m−1

Z
d) ∩ [0, 1]d : |x|1 < m−1⌊mℓ⌋}, Ḡ(m) = {x ∈ (m−1

Z
d) ∩ [0, 1]d : |x|1 ≤

m−1⌊mℓ⌋} and ∂G(m) = Ḡ(m) \ G(m) = {x ∈ (m−1
Z
d) ∩ [0, 1]d : |x|1 = m−1⌊mℓ⌋}. The

deadlock time for the process is

τ (m) =
1

m
inf

{

n ≥ 0 : |Xn|1 = ⌊mℓ⌋
}

= inf
{

t ≥ 0 : X̄
(m)
t ∈ ∂G(m)

}

.

We consider the following simple situation:

Assumption (A.4). The point 0 is the unique equilibrium point of the RDE (2.7). It
is stable and attracts the closure Ḡ = G ∪ ∂G, that is, for all x0 ∈ Ḡ and t > 0, χx0

t ∈ G
and limt→∞ χx0

t = 0.
Example (5.58) given below satisfies the previous assumption provided that g1, g2 are

(strictly) positive on (0, 1].

Quasi-potential. The function

V (x, y) = inf{Jx0,T (φ); φ0 = x, φT = y, T > 0}

is called the quasi-potential. It describes the cost for the random path X̄(m) starting
from x to reach the point y ∈ G at some time scaling with m as m becomes large.
(We emphasize that, here and below, the notation Jx0,T (φ) implicitly assumes that φ is a
function from [0, T ] to [0, 1]d.)
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Proposition 4.1 Under Assumptions (A.1–3), there exists a constant C > 0, such that,
for all x, y ∈ [0, 1]d, with λ = |x − y|1 > 0, the function ψ : t ∈ [0, λ] 7→ x + t(y − x)/λ
satisfies ψ0 = x, ψλ = y and Jx0,λ(ψ) ≤ Cλ. In particular, V (x, y) ≤ C|x− y|1.

� Proof. By (A.2) and (3.3), for all x ∈ [0, 1]d and α ∈ R
d, H(x, α) ≥ ln(c exp(|α|∞)) =

ln(c) + |α|∞, with c = inf{p(z, i, v); z ∈ [0, 1]d, i ∈ E, v ∈ V} > 0. Hence, for all v ∈ R
d,

L(x, v) ≤ supα{〈α, v〉− |α|∞}− ln(c) ≤ supα{|α|∞(|v|1−1)}− ln(c) ≤ − ln(c) if |v|1 ≤ 1.
The proof is easily completed.

4.1 Deadlock Time and Exit Points

We define the minimum value of the quasi-potential V (0, ·) on the boundary of G by

V̄ = inf{J0
0,T (φ); φ0 = 0, |φT |1 = ℓ, T > 0}

and the set of minimizers

M = {y ∈ ∂G : V (0, y) = V̄ }. (4.12)

By Proposition 4.1, V̄ is finite. A consequence of Theorem 3.1 and Proposition 4.1 is

Theorem 4.2 Assume that (A.1–4) are in force and consider a sequence (xm)m≥1 in
G, with mxm ∈ Z

d for all m ≥ 1, such that xm → x ∈ G. Then,

Exm [τ (m)] = exp
[

m(V̄ + o(1))
]

(4.13)

as m→ ∞. Moreover, for all positive δ,

lim
m→∞

Pxm

{

exp[m(V̄ − δ)] < τ (m) < exp[m(V̄ + δ)]
}

= 1. (4.14)

Finally, for all ε > 0, it holds

Pxm

{

d(X̄
(m)

τ (m) ,M) < ε
}

→ 1 as m→ ∞ , (4.15)

where d(X̄
(m)

τ (m) ,M) denotes the distance from X̄
(m)

τ (m) to the set M.

� Proof. The proof follows the standard theory of Markov perturbations of dynamical
systems in [16, Chapter 6]. For the sake of completeness, we provide the main steps
according to the very detailed scheme in [9, Section 5.7] (Section 5.7 is devoted to large
deviations for stochastic differential equations with a small noise).

We define, for x ∈ G, V (x, ∂G) = inf{Jx0,T (φ); φ0 = x, |φT |1 = ℓ, T > 0}, so that

V (0, ∂G) = V̄ . We also define the ball B̄
(m),+
ρ in the lattice orthant of mesh 1/m,

B̄(m),+
ρ = {z ∈ (m−1

Z
d) ∩ [0, 1]d : |z|1 ≤ m−1⌊mρ⌋}.

In the whole proof, we assume that 0 < 2ρ < ℓ.
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Lemma 4.3 For any η > 0 and for any ρ > 0 small enough, there exists T0 < +∞, such
that

lim inf
m→+∞

m−1 ln inf
x∈B̄

(m),+
ρ

Px{τ
(m) ≤ T0} ≥ −V̄ − η.

� Proof. We first fix a small η > 0. By the definition of V̄ , we can find S0 > 0 and
φ0 ∈ C([0, S0], [0, 1]d), with φ0

0 = 0, such that J0
0,S0

(φ0) ≤ V̄ + η and φS0 ∈ ∂G. By
Proposition 4.1 and by the additive form of J , see Theorem 3.4, we can extend φ after
S0 to leave Ḡ at low cost, and assume that φ([0, S0]) ∩ ∂G 6= ∅ and δ = d(φS0, Ḡ) > 0.

For x ∈ [0, 1]d, |x|1 < 2ρ, we can find by Proposition 4.1 a path ζ ∈ C([0, 2ρ]; [0, 1]d)
such that ζ0 = x, ζ2ρ = 0 and Jx0,2ρ(ζ) ≤ Cρ. By concatenating ζ and φ, we obtain a path
φx. For ρ ≤ η/C, it satisfies

J0,T0(φ
x) ≤ V̄ + 2η ,

with T0 = S0 + 2ρ. Now, the set

Ψ =
⋃

x∈[0,1]d, |x|1<2ρ

{

ψ ∈ C([0, T0]; [0, 1]d) : ρ0T0(ψ, φ
x) < δ/2

}

,

is an open subset of C([0, T0]; [0, 1]d). By Proposition 3.2,

lim inf
m→+∞

m−1 inf
x∈B̄

(m),+
ρ

ln Px{τ
(m) ≤ T0} ≥ lim inf

m→+∞
m−1 inf

x∈B̄
(m),+
ρ

ln Px{X̄
(m) ∈ Ψ}

≥ − sup
x∈[0,1]d , |x|1≤ρ

inf
ψ∈Ψ

Jx0,T0
(ψ)

≥ − sup
x∈[0,1]d , |x|1≤ρ

Jx0,T0
(φx) ≥ −V̄ − 2η.

This completes the proof.

Lemma 4.4 Let σρ = inf{t ≥ 0 : X̄
(m)
t ∈ B̄

(m),+
ρ ∪ ∂G(m)}. Then,

lim
t→+∞

lim sup
m→+∞

[

m−1 ln sup
x∈G(m)

Px{σρ > t}
]

= −∞.

� Proof. For x ∈ B̄
(m),+
ρ , there is nothing to prove. Now, as in the proof of [9, Lemma

5.7.19], we can define for t ≥ 0 the closed set Ψt = {φ ∈ C([0, t]; [0, 1]d) : ψs ∈ Ḡ \
B+
ρ/2, ∀s ∈ [0, t]}, where B+

ρ/2 is the ball in the orthant, B+
ρ/2 = {z ∈ [0, 1]d : |z|1 < ρ/2}.

For X̄
(m)
0 ∈ Ḡ(m) and m large, σρ > t implies (X̄

(m)
s )0≤s≤t ∈ Ψt. By Proposition 3.2,

lim sup
m→+∞

[

m−1 ln sup
x∈G(m)\B̄

(m),+
ρ

Px{σρ > t}
]

≤ lim sup
m→+∞

[

m−1 ln sup
x∈G(m)\B̄

(m),+
ρ

Px{X̄
(m) ∈ Ψt}

]

≤ − inf
x∈Ḡ\B+

ρ/2

inf
ψ∈Ψt

Jx0,t(ψ) = − inf
ψ∈Ψt

Jψ0

0,t (ψ).

Using the stability of the solutions to (2.7) (see Subsection 2.2) and the additivity of the
action functional (see Theorem 3.4), we can complete as in [9].
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Lemma 4.5 Let N be a closed subset, included in ∂G. Then, for every ε > 0,

lim
ρ→0

lim sup
m→+∞

[

m−1 ln sup
y∈S

(m),+
2ρ

Py{dist(X̄(m)
σρ

, N) < ε}
]

≤ − inf
z∈N

V (0, z) + δε,

with limε→0 δε = 0. Here, S
(m),+
ρ = {z ∈ m−1

Z
d ∩ [0, 1]d : |z|1 = m−1⌊ρm⌋} is the sphere

in the lattice orthant with mesh 1/m.

� Proof. The proof is the same as in [9, Lemma 5.7.21], except the application of
Corollary 5.6.15. For T > 0, we can define, as in [9], Φ = {φ ∈ C([0, T ]; [0, 1]d) : ∃t ∈

[0, T ], φt ∈ N}. If σρ ≤ T and dist(X̄
(m)
σρ , N) < ε, then ρ0,T (X̄(m),Φ) ≤ ε. So that,

Proposition 3.2 yields

lim sup
m→+∞

[

m−1 ln sup
y∈S

(m),+
2ρ

Py{σρ ≤ T, dist(X̄(m)
σρ

, N) < ε}
]

≤ − inf
d(y,S+

2ρ)≤ε
inf

d(φ,Φ)≤ε
Jy0,T (φ) = − inf

{

Jφ0

0,T (φ); d(φ0, S
+
2ρ) ≤ ε, d(φ,Φ) ≤ ε

}

,

with S+
ρ = {z ∈ [0, 1]d : |z|1 = ρ} is the sphere in the lattice orthant. Using the

semicontinuity of J , the reader can check that (see [9, Lemma 4.1.6])

lim
ε→0

inf
d(φ0,S

+
2ρ)≤ε

inf
d(φ,Φ)≤ε

Jφ0

0,T (φ) = inf
φ0∈S

+
2ρ

inf
φ∈Φ

Jφ0

0,T (φ).

The end of the proof is the same.

Lemma 4.6 Let K be a compact subset of [0, 1]d included in G(m) for m large. Then,

lim
m→+∞

inf
xm∈K

Pxm{X̄
(m)
σρ

∈ B̄(m),+
ρ } = 1.

� Proof. The proof is the same as in [9, Lemma 5.7.22], up to the infimum over the
compact set K. By (A.4) and by the regularity of the flow (t, x) ∈ R+ × [0, 1]d 7→
χxt , the hitting time T = inf{t ≥ 0 : ∀x ∈ [0, 1]d, |χxt |1 ≤ ρ/2} is finite. Moreover,
inft∈[0,T ],x∈K d(χ

x
t , ∂G) > 0. Using Corollary 3.3, it is plain to conclude.

Finally, we have the following obvious result

Lemma 4.7 sup
x∈G(m)

Px{ sup
0≤t≤ρ

|X̄(m)
t − x| ≥ 2ρ} = 0.

It now remains to follow the proof of [9, Theorem 5.7.11]. The crucial point to note
is the following: τ (m) and σρ take their values in m−1

N and are stopping times for the

filtration (F ξ,X
⌊mt⌋)t≥0. In particular, the Markov property (for (ξ,X)) applies quite easily.

For example, for x ∈ G(m) and s, t in N
∗ (and thus in m−1

N
∗),

Px{σρ ≤ t, X̄(m)
σρ

∈ B̄(m),+
ρ , τ (m) ≤ t+ s}

≥ Px{σρ ≤ t, X̄(m)
σρ

∈ B̄(m),+
ρ } inf

y∈B̄
(m),+
ρ ,i∈E

P
i
y{τ

(m) ≤ s},
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so that

Px{τ
(m) ≤ t+ s}

≥ Px{σρ ≤ t, X̄(m)
σρ

∈ B̄(m),+
ρ , τ (m) ≤ t+ s} + Px{σρ ≤ t, X̄(m)

σρ
∈ ∂G(m)}

≥ Px{σρ ≤ t} inf
y∈B̄

(m),+
ρ ,i∈E

P
i
y{τ

(m) ≤ s}.

This shows that (5.7.24) in [9] holds. Similarly, for t ∈ N
∗ and k ∈ N,

Px{τ
(m) > (k + 1)t} ≤ Px{τ

(m) > kt} sup
y∈G(m),i∈E

P
i
y{τ

(m) > t}.

Now, the upper bounds in (4.13) and (4.14) can be derived as in [9].
Turn to the lower bounds. Following [9], we introduce the following notations (pay

attention to that m in [9] refers to a complete different parameter than in our case):

θ0 = 0, τn = inf{t ≥ θn : X̄
(m)
t ∈ B̄(m),+

ρ ∪ ∂G(m)}, θn+1 = inf{t ≥ τn : X̄
(m)
t ∈ S

(m),+
2ρ },
(4.16)

G ∂G

X̄
(m)
τ

(m)

Terseg(X̄ (m))

1

10

Figure 1: The path X̄(m) up to the deadlock time τ (m) (d = 2, ℓ = 1.7). Spheres Sρ, S2ρ

are indicated by dashed lines. The seven large dots on the path are the locations at times
θ0 = τ0 = 0, θ1, τ1, θ2, τ2, θ3, τ3 = τ (m). The last part of the curve is the terminal segment
Terseg defined in the proof of Theorem 4.8.

with θn+1 = +∞ if X̄
(m)
τn ∈ ∂G(m). These stopping times are indicated in Figure 1. It is

plain to obtain (5.7.26) of [9] (with the Markov property and Lemma 4.5, with N = ∂G
and ε as small as necessary) as well as (5.7.27) (with Lemma 4.7). The end of the proof
of the lower bound just follows the strategy in [9].

Turn to the second statement in Theorem 4.2. This is a particular case of b) in [9]. Set
N = ∂G ∩ {x ∈ [0, 1]d : dist(x,M) ≥ ε}. It is a closed set. Then, for ε′ > 0, we can
focus on

sup
y∈S

(m),+
2ρ

Py{dist(X̄(m)
σρ

, N) < ε′}.
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Setting VN = infy∈N V (0, y), we deduce from Lemma 4.5 that for ρ, ε′ > 0 small enough
and for m large enough

sup
y∈S

(m),+
2ρ

Py{dist(X̄(m)
σρ

, N) < ε′} ≤ exp[−m(VN − η)],

with η < (VN − V̄ )/3 < 0. Then, we can follow the proof in [9] and prove that for
xm ∈ G(m), xm → x ∈ G,

lim
m→+∞

Pxm{dist(X̄
(m)

τ (m) , N) < ε′} = 0.

Since dist(X̄
(m)

τ (m) , ∂G) ≤ C/m, we complete the proof.

4.2 Generic Behavior Leading to Deadlock

From (4.15) we observe that when M reduces to a single point y∗, the location of the
process X̄(m) when exiting G converges to y∗. We can extend this observation from the
exit point to the path itself before it exits G. To do so, we first need to extend the action
functional to any interval of R, which can be done in a trivial way thanks to Theorem 3.4:
for any continuous path (ψt)t≤0, with lim−∞ ψ = 0, we denote by J−∞,0(ψ) the integral
of Lref(ψt, ψ̇t) from −∞ to 0. Since 0 is a fixed point for the limit RDE by Assumption
(A.4), we have Lref(0, 0) = 0, and then

inf{J0
0,T (φ); φ0 = 0, φT = y, T > 0} = inf{J−∞,0(ψ); lim

−∞
ψ = 0, ψ0 = y},

for y ∈ G. Indeed, for all T, φ as in the left-hand side, the path ψ given by ψt = φt+T
for t ∈ [−T, 0] and ψt = 0 for t < −T is such that J−∞,0(ψ) = J0,T (φ). This proves
that the left-hand side is greater than the right-hand side. Conversely, for a path ψ with
lim−∞ ψ = 0 and ψ0 = y, we can find, for every δ > 0, T < 0 such that |ψT | < δ. By
Proposition 4.1, we can find a path θ from [0, δ] into [0, 1]d, with θ0 = 0 and θδ = ψT ,
such that J0

0,δ(θ) ≤ Cδ. Concatenating this path to the restriction of the path ψ to [T, 0]
(up to a trivial change of time in ψ), we obtain a new path φ. It is defined on [0, T + δ]
and satisfies φ0 = 0, φT+δ = y and J0

0,T (φ) ≤ Cδ + J−∞,0(ψ). This proves that the two
infimums are equal.

Now, we can state the convergence result of the exit path.

Theorem 4.8 Under Assumptions (A.1–4), assume uniqueness of the optimal path to
exit G from 0, i.e., assume that M = {y∗} and that there is a unique ϕ : (−∞, 0] → Ḡ,
ϕ((−∞, 0)) ⊂ G, minimizing J−∞,0(ϕ) subject to ϕ0 = y∗, limt→−∞ ϕt = 0 (in such a
case, ϕ is also the unique minimizing path with values in [0, 1]d – and not only in Ḡ – ).
Let K be a compact set, included in G, and containing a neighborhood of the origin. We
denote by α

(m)
K the last exit time before τ (m) of X̄(m) from K ∩ (m−1

Z
d). Then, for any

sequence (xm)m≥1, xm ∈ G(m) and xm → x ∈ G, and any ε > 0

lim
m→+∞

Pxm

{

∃t ∈ [α
(m)
K , τ (m)], |X̄(m)

t − ϕt−τ (m) | > ε
}

= 0.
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� Proof. Our proof is inspired by [3, Section 2, Chapter 4]. We keep the notations
introduced in the proof of Theorem 4.2. In addition, we define ν = max{n ≥ 1 : θn <
τ (m)}. If τ (m) = τ0, we set ν = 0. We denote by Terseg(X̄(m)) the terminal “segment” of
the path X̄(m), that is, the restriction of X̄(m) to the interval [θν , τ

(m) = τν ], but shifted
in time to the interval [0, τν − θν ]. More precisely, if we denote by Θt the shift operator,
i.e. Θtψ(s) = ψ(s + t), then Terseg(X̄(m)) is defined as the restriction of Θθν(X̄

(m)) to
[0, τν − θν ].

Fix ε > 0. For y ∈ B̄
(m),+
ρ and L ∈ N

∗, we have τ0 = 0 and

Py{ρ0,τν−θν (Terseg(X̄(m)),Θθν−τνϕ) ≥ ε}

≤ Py{τ
(m) > τL} +

L
∑

k=1

Py{τ
(m) = τk, ρθk ,τk(X̄

(m),Θ−τkϕ) ≥ ε}

≤ Py{τ
(m) > τL} +

L
∑

k=1

Py{X̄
(m)
τk

∈ ∂G(m), ρθk,τk(X̄
(m),Θ−τkϕ) ≥ ε}.

(4.17)

Focus on the second term. The Markov property yields

L
∑

k=1

Py{X̄
(m)
τk

∈ ∂G(m), ρθk,τk(X̄
(m),Θ−τkϕ) ≥ ε}

≤ L sup
z∈S

(m),+
2ρ ,i∈E

P
i
z{X̄

(m)
σρ

∈ ∂G(m), ρ0,σρ(X̄
(m),Θ−σρϕ) ≥ ε}.

(4.18)

For T > 0, we can bound the last quantity as follows

Pz

{

X̄(m)
σρ

∈ ∂G(m), ρ0,σρ(X̄
(m),Θ−σρϕ) ≥ ε

}

≤ Pz

{

σρ ≥ T
}

+ Pz

{

X̄(m)
σρ

∈ ∂G(m), σρ ≤ T, ρ0,σρ(X̄
(m),Θ−σρϕ) ≥ ε

}

.
(4.19)

Now set, for T, r > 0, ΓT (r) = {ψ ∈ C([0, T ]; [0, 1]d) : ψ([0, T ])∩∂G 6= ∅, ρ−T,0(ΘTψ, ϕ) ≥
r}. We then recall the following result in [3] (see Lemma 2.8, p. 105, the proof relies on
the uniqueness of ϕ and is exactly the same in our setting, except (4), p. 106, which has
to be read lim infk→+∞ d−Tk,0(ΘTk

gk, ϕ) > 0):

∀r > 0, ∃α > 0, ∀T > 0, inf
ψ∈ΓT (r),ψ0=0

J0,T (ψ) > V̄ + α.

We now consider T, r > 0 and ψ ∈ ΓT (r) with |ψ0| ≤ 2ρ. We then prove that the
above lower bound still holds for ρ small enough. Indeed, we can consider a path ψ̃,
with ψ̃0 = 0, ψ̃S = ψ0 and ψ̃t+S = ψt for t ∈ [0, T ]. Using Proposition 4.1, we can
assume that S ≤ Cρ and that J0,T+S(ψ̃) ≤ Cρ + J0,T (ψ). We choose Cρ ≤ α/2. Since
ρ0,T+S(ψ̃,Θ−(T+S)ϕ) ≥ r, we have J0,T+S(ψ̃) > V̄ + α. Finally, J0,T (ψ) > V̄ + α/2.

We now choose r = ε/2. For the corresponding α > 0, we choose Cρ ≤ α/2 as above.
Then, by means of Lemma 4.4, we can pick T large enough so that for m large enough

sup
z∈S

(m),+
2ρ

Pz

{

σρ ≥ T
}

≤ exp(−m(V̄ + 1)). (4.20)
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Now, for 0 < ε′ < ε/2,

sup
z∈S

(m),+
2ρ

Pz

{

X̄(m)
σρ

∈ ∂G(m), σρ ≤ T, ρ0,σρ(X̄
(m),Θ−σρϕ) ≥ ε

}

≤ sup
z∈S

(m),+
2ρ

Pz

{

ρ0,T (X̄(m), AT (ε/2, 2ρ)) ≤ ε′
}

,

where AT (ε/2, 2ρ) stands for the set of continuous functions from [0, T ] into [0, 1]d, with
|ψ0| ≤ 2ρ, for which we can find t ∈ [0, T ] such that the restriction of ψ to [0, t] belongs
to Γt(ε/2). This is a closed set. Hence, Proposition 3.2 yields for ε′ small enough and m
large enough

sup
z∈S

(m),+
2ρ

Pz

{

X̄(m)
σρ

∈ ∂G(m), σρ ≤ T, ρ0,σρ(X̄
(m),Θ−σρϕ) ≥ ε

}

≤ exp[−m( inf
z∈B+

2ρ

inf
d(φ,AT (ε/2,2ρ))≤ε′

Jz0,T (φ) − α/12)]

≤ exp[−m( inf
d(φ,AT (ε/2,2ρ))≤ε′

Jφ0

0,T (φ) − α/12)] ≤ exp[−m( inf
φ∈AT (ε/2,2ρ)

Jφ0

0,T (φ) − α/6)],

(4.21)

the last inequality following from [9, Lemma 4.1.6]. For all φ ∈ AT (ε/2, 2ρ), there exists
t ∈ [0, T ] such that the restriction of φ to [0, t] belongs to Γt(ε/2). We deduce that
Jφ0

0,T (φ) ≥ Jφ0

0,t(φ) ≥ V̄ + α/2. Finally, by (4.17), (4.18), (4.19), (4.20) and (4.21),

Py{ρ0,τν−θν (Terseg(X̄(m)),Θθν−τνϕ) ≥ ε} ≤ Py{τ
(m) > τL} + 2L exp(−m(V̄ + α/3)).

We can conclude as in the proof of [9, Theorem 5.7.11, (b)]. We can find a constant C
such that

sup
y∈B

(m),+
ρ

Py{ρ0,τν−θν (Terseg(X̄(m)),Θθν−τνϕ) ≥ ε}

≤ CL−1 exp(m(V̄ + α/6)) + 2L exp(−m(V̄ + α/3)).

We then choose L = ⌊exp(m(V̄ + α/4))⌋. For an arbitrary initial condition in G, we
conclude as in the proof of [9, Theorem 5.7.11, (b)] by means of Lemma 4.6 (and the
Markov property).

4.3 Exponential Limit Law for Deadlock Time

Since the exponential law is the generic distribution for rare events, it appears naturally
in the following refinement of Theorem 4.2 (see e.g. [30, Theorem 5.21]).

Theorem 4.9 In addition to (A.1–4), assume that the matrix P 2 is irreducible and that
there exists a constant κ > 0 such that for all x, y ∈ [0, 1]2 and i ∈ E

∑

u∈Λ,u⊥x−y

∣

∣p(x, i, u) − p(y, i, u)
∣

∣ +
∑

u∈Λ

(

p(x, i, u) − p(y, i, u)
)

sgn
(

〈x− y, u〉
)

≤ −κ|x− y|1

(4.22)
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(As usual, sgn(·) denotes the sign function, with sgn(u) = u/|u| for u 6= 0 and sgn(0) =
0.). Define T im = min{t > 0 : P

i
0(τ

(m) > t) ≤ e−1} for i ∈ E and m ≥ 1. Then, for any
sequence of starting points (xm)m≥1 in G, with xm → x ∈ G as m→ +∞,

the law of τ (m)/T im under P
i
xm

weakly converges to an exponential law of mean 1.

In what follows, we will prove that, for any i, j ∈ E, T im/T
j
m → 1 as m tends to +∞.

In particular, the image law (τ (m)/T jm)(Pixm
) weakly converges to an exponential law of

mean 1 for any i, j ∈ E.
Condition (4.22) is not empty : Example (5.58) given below fulfills (4.22) if g1, g2 are

strictly increasing with g′1, g
′
2 ≥ κ′ a.e. for some κ′ > 0.

� Proof. The following result is the analogue of [30, Lemma 5.22]. Its proof is deferred
to Section 7.1,

Lemma 4.10 There exists δ > 0, such that, for all i ∈ E and S > 0,

lim
m→+∞

sup
|x|1,|y|1≤δm,|x−y|1∈2N

sup
t≥S

|Pix/m{τ
(m) > tm2} − P

i
y/m{τ

(m) > tm2}| = 0.

With this lemma at hand, we can prove

Lemma 4.11 For all η > 0 and S > 0, we can find a sequence (εm)m≥1 of positive reals,
tending to 0 as m→ +∞, such that for all i, j ∈ E,

∀t ≥ S, P
i
0{τ

(m) > tm2} ≤ P
j
0{τ

(m) > tm2 − ηm} + εm

� Proof of Lemma 4.11. For i ∈ E, we set ϑi = inf{k ∈ 2N : Xk = i}. Since P 2 is
assumed to be irreducible, it is a finite stopping time. For δ as in Lemma 4.10 and η < δ,

P
i
0{τ

(m) > tm2} ≤ P
i
0{τ

(m) > tm2, ϑj < ηm} + P
i
0{ϑj ≥ ηm}

≤ sup
{|x|1≤δm,|x|1∈2N}

P
j
x/m{τ

(m) > tm2 − ηm} + P
i
0{ϑj ≥ ηm}.

It is clear that limm→+∞ P
i
0{ϑj ≥ ηm} = 0. By Lemma 4.10, the proof is easily completed.

We now complete the proof of Theorem 4.9. We keep the notations introduced in the
proof of Theorem 4.2. Following [30, Lemma 5.23], we can set for i ∈ E

∀t ≥ 0, F (m),i(t) = P
i
0{τ

(m) > tT im} = P
i
0{τ

(m) > m−1⌊mtT im⌋}.

By Theorem 4.2, for every δ > 0, we have limm→+∞ T im exp[−m(V̄ − δ)] = +∞ and
limm→+∞ T im exp[−m(V̄ + δ)] = 0. Moreover, by the Markov property, for j ∈ E, ρ < ℓ
and t > 0,

sup
xm∈G(m)

P
j
xm

{τ (m) > m−1⌊mtT im⌋, σρ < m−1⌊T im⌋}

≤ sup
xm∈G(m)

P
j
xm

{σρ < m−1⌊T im⌋} sup
y∈B̄

(m),+
ρ ,k∈E

P
k
y{τ

(m) > m−1(⌊mtT im⌋ − ⌊T im⌋)}

≤ sup
y∈B̄

(m),+
ρ ,k∈E

P
k
y{τ

(m) > m−1(⌊mtT im⌋ − ⌊T im⌋)}.
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In the above supremum, we aim at applying Lemma 4.10 to the starting points 0 and y (ρ
being small enough). There is no difficulty if |y|1 ∈ 2m−1

N. If |y|1 ∈ (2m−1
N+m−1), the

Markov property yields P
k
y{τ

(m) > m−1(⌊mtT im⌋−⌊T im⌋)} ≤ sup|z−y|1=1/m,k′∈E P
k′

z {τ
(m) >

m−1(⌊mtT im⌋ − ⌊T im⌋ − 1)}, so that we can still apply Lemma 4.10. By Lemma 4.4,
we deduce that we can choose ρ small enough and find some sequence (δm)m≥1 with
limm→+∞ δm = 0 such that

sup
xm∈G(m)

P
j
xm

{τ (m) > m−1⌊mtT im⌋} ≤ sup
k∈E

P
k
0{τ

(m) > m−1(⌊mtT im⌋ − ⌊T im⌋ − 1)} + δm

≤ P
i
0{τ

(m) > m−1(⌊mtT im⌋ − 2⌊T im⌋)} + δm,

(4.23)

the second line following from Lemma 4.11. The Markov property yields for t, s > 0,

P
i
0{τ

(m) > m−1⌊m(t+ s)T im⌋}

≤ P
i
0{τ

(m) > m−1(⌊m(t+ s)T im⌋ − ⌊mtT im⌋)} sup
xm∈G(m),j∈E

P
j
xm

{τ (m) > m−1⌊mtT im⌋}

≤ P
i
0{τ

(m) > m−1(⌊m(t+ s)T im⌋ − ⌊mtT im⌋)}P
i
0{τ

(m) > m−1(⌊mtT im⌋ − 2⌊T im⌋)}

+ δm.

(4.24)

We can prove the converse inequality in a similar way. For any compact subset K ⊂ G,
we deduce from Lemmas 4.4, 4.6, 4.10 and 4.11 that, for tm > 1, (up to a modification
from line to line of the sequence (δm)m≥1 – which may depend on K – )

inf
xm∈K∩G(m)

P
j
xm

{τ (m) > m−1⌊mtT im⌋}

≥ inf
xm∈K∩G(m)

P
j
xm

{τ (m) > m−1⌊mtT im⌋, σρ < m−1⌊T im⌋, X̄
(m)
σρ

∈ B̄(m),+
ρ }

≥ inf
xm∈K∩G(m)

P
j
xm

{σρ < m−1⌊T im⌋, X̄
(m)
σρ

∈ B̄(m),+
ρ }

× inf
y∈B̄

(m),+
ρ ,k∈E

P
k
y{τ

(m) > m−1⌊mtT im⌋}

≥ (1 − δm)
[

P
i
0{τ

(m) > m−1(⌊mtT im⌋ + ⌊T im⌋)} − δm
]

≥ P
i
0{τ

(m) > m−1(⌊mtT im⌋ + ⌊T im⌋)} − δm.

(4.25)

Now, for t, s > 0, (4.25) yields

P
i
0{τ

(m) > m−1⌊m(t+ s)T im⌋}

≥ P
i
0{τ

(m) > m−1(⌊m(t+ s)T im⌋ − ⌊mtT im⌋), X̄
(m)

m−1(⌊m(t+s)T i
m⌋−⌊mtT i

m⌋) ∈ K}

× inf
xm∈K∩G(m),j∈E

P
j
xm

{τ (m) > m−1⌊mtT im⌋}

≥ P
i
0{τ

(m) > m−1(⌊m(t+ s)T im⌋ − ⌊mtT im⌋), X̄
(m)

m−1(⌊m(t+s)T i
m⌋−⌊mtT i

m⌋) ∈ K}

× P
i
0{τ

(m) > m−1(⌊mtT im⌋ + ⌊T im⌋)} − δm.

(4.26)

By (A.4), for any starting point x0 ∈ Ḡ, χx0
t ∈ G for t > 0. In particular, d(χx0

1 , ∂G) > 0.
By the stability property for RDEs driven by Lipschitz continuous coefficients, we have
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infx0∈Ḡ d(χ
x0
1 , ∂G) > 0. In other words, we can find a compact subset K0 ⊂ G such that

χx0
1 ∈ K0 for any x0 ∈ Ḡ. We denote by ε = d(K0, ∂G) > 0 the distance from K0 to ∂G.

By Corollary 3.3,

lim
m→+∞

sup
xm∈G(m),j∈E

P
j
xm

{d(X̄(m)
1 , ∂G) ≤ ε/2} = 0. (4.27)

By the Markov property,

P
i
0{τ

(m) > m−1(⌊m(t+ s)T im⌋ − ⌊mtT im⌋), d(X̄
(m)

m−1(⌊m(t+s)T i
m⌋−⌊mtT i

m⌋), ∂G) ≥ ε/2}

= P
i
0{τ

(m) > m−1(⌊m(t+ s)T im⌋ − ⌊mtT im⌋)}

− P
i
0{τ

(m) > m−1(⌊m(t+ s)T im⌋ − ⌊mtT im⌋), d(X̄
(m)

m−1(⌊m(t+s)T i
m⌋−⌊mtT i

m⌋), ∂G) < ε/2}

≥ P
i
0{τ

(m) > m−1(⌊m(t+ s)Tm⌋ − ⌊mtTm⌋)} − sup
xm∈G(m),j∈E

P
j
xm

{d(X̄(m)
1 , ∂G) ≤ ε/2}.

We can plug K = {z ∈ G : d(z, ∂G) ≥ ε/2} in (4.26). By (4.27) and the above inequality,

P
i
0{τ

(m) > m−1⌊m(t+ s)T im⌋} ≥ P
i
0{τ

(m) > m−1(⌊m(t+ s)T im⌋ − ⌊mtT im⌋)}

× P
i
0{τ

(m) > m−1(⌊mtT im⌋ + ⌊T im⌋)} − δm.
(4.28)

By (4.24) and (4.28),

F (m),i(s+ δm)F (m),i(t+ δm) − δm ≤ F (m),i(t+ s) ≤ F (m),i(t− δm)F (m),i(s− δm) + δm,

so that lim supm→+∞ F (m),i(k+ ε) ≤ e−k for k ∈ N and ε > 0. In particular, the sequence
τ (m)/T im is tight. Up to a subsequence, it converges in law. The limit distribution function
is denoted by F . Up to a countable subset of (0,+∞), F (m),i(t) converges to F (t). Hence,
we can pass to the limit in the above inequality. For all η > 0,

F (t+ η)F (s+ η) ≤ F (t+ s) ≤ F (t− η)F (s− η).

It is plain to deduce that the limit distribution is the exponential law with mean one.
By (4.23) and (4.25), this is true for any starting point. Moreover, for all j ∈ E,
(τ (m)/T im)(Pj0) weakly converges to the exponential law with mean one. Since (τ (m)/T jm)(Pj0)
weakly converges to the same distribution, we deduce that T im/T

j
m → 1 as m→ +∞.

4.4 Hamilton-Jacobi Equation for the Quasi-Potential

In practice, it is important to compute the quasi-potential V (0, x) as well as the optimal
paths. (In what follows, we write, for the sake of simplicity, V (x) = V (0, x).)

In [16, Chapter 5, Theorem 4.3] and [9, Exercise 5.7.36], it is shown that the quasi-
potential is characterized through a Hamilton-Jacobi equation of the form

H
(

x,∇V (x)
)

= 0.
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Loosely speaking, the equation for the quasi-potential has the same structure in our
setting. However, due to the reflection phenomenon, it satisfies some specific boundary
condition.

Form of the Equation. Here, we specify both the equation and the boundary con-
dition in the viscosity sense, the notion of viscosity solutions being, in a general way,
particularly well adapted to optimal control problems. (See for example [5] or [6] for a
review on this connection.) Indeed, the quasi-potential is nothing but the value function
of some optimal control problem. In the formula (3.8), L(φs, ψs) may be interpreted as
some instantaneous cost at time s when the trajectory φ is driven by the control ψ. The
controlled dynamical system obeys the rule: ∀t ≥ 0, φt = ψt − kt, with k as in (2.5).

Proposition 4.12 We assume that (A.1–3) are in force. Then, for every x ∈ (0, 1)d

and every continuously differentiable function θ on a neighborhood U ⊂ (0, 1)d of x,

H
(

x,∇θ(x)
)

≤ 0 if V − θ has a local maximum at x,

H
(

x,∇θ(x)
)

= 0 if V − θ has a local minimum at x.
(4.29)

Moreover, for every x ∈ ∂[0, 1]d and every continuously differentiable function θ on U ∩
[0, 1]d, U being a neighborhood of x,

H
(

x,∇θ(x)
)

≥ 0 if

{

∀n ∈ N (x), 〈∇θ(x), n〉 ≥ 0,
V − θ has a local minimum at x on U ∩ [0, 1]d,

H
(

x,∇θ(x)
)

≤ 0 if

{

∀n ∈ N (x), 〈∇θ(x), n〉 ≤ 0,
V − θ has a local minimum at x on U ∩ [0, 1]d.

(4.30)

The asymmetry between the two conditions in (4.29) is standard in the theory of
optimal control. The first line says that V is a viscosity subsolution of the Hamilton-
Jacobi equation in (0, 1)d, the second one that V is a bilateral supersolution. Generally
speaking, V is also a bilateral subsolution at x ∈ (0, 1)d, i.e. H(x,∇θ(x)) = 0 if V − θ
has a local maximum at x, if there exists an optimal path reaching x. We refer the reader
to [5, §2.3, Chapter III] for more details.

The boundary condition (4.30) is a boundary condition of Neumann type. This Neu-
mann condition expresses the reflected structure of the controlled dynamical system. The
viscosity formulation of the Neumann boundary condition has been introduced in [24].
In what follows, we will explain the link between this weak formulation and the standard
Neumann condition.

� Proof. The proof is standard. We first give a suitable version of the Bellman dynamic
programming principle for the quasi-potential V . Then, we will deduce Proposition 4.12.

Lemma 4.13 For all x ∈ [0, 1]d, for all t > 0,

V (x) = inf
{

V (y) +

∫ t

0

L(φs, ψ̇s)ds; (y, φ, ψ) : φ0 = y, φt = x, φ = Ψ(ψ)
}

. (4.31)
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(In the above formula, we can assume that |ψ̇s| ≤ 1 for a.e. s ∈ [0, t] since L(x, v) = +∞
for |v| > 1. In particular, we can assume that |φ̇s| ≤ 1 and |ψ̇s− φ̇s| ≤ 1 for a.e. s ∈ [0, t].
Indeed, |ψ̇s|2 = |φ̇s|2 + |ψ̇s − φ̇s|2 for a.e. s ∈ [0, t].)

The proof of Lemma 4.13 is left to the reader. Details may be found in [5, Proposition
2.5, Chapter III].

With the Bellman dynamic programming principle at hand, it is standard to prove that
V is both a subsolution and a supersolution at x ∈ (0, 1)d, i.e. H(x,∇θ(x)) ≤ 0 if V − θ
has a local maximum at x and H(x,∇θ(x)) ≥ 0 if V − θ has a local minimum at x. (See
for example the proof of [5, Proposition 2.8, Chapter III].)

We now investigate the first boundary condition.
For a given x ∈ ∂[0, 1]d, we assume that there exists a continuously differentiable

function θ on U ∩ [0, 1]d, U being a neighborhood of x, such that V − θ has a local
minimum at x on U ∩ [0, 1]d. Without loss of generality, we can assume that θ(x) = V (x)
and that the minimum is global on U∩[0, 1]d so that V (y)−θ(y) ≥ 0 for all y ∈ U∩[0, 1]d.
We also assume 〈∇θ(x), n〉 ≥ 0 for all n ∈ N (x).

For t small, we can assume that y ∈ U in the dynamic programming principle. We
deduce that, for all t small,

θ(x) ≥ inf
{

θ(y) +

∫ t

0

L(φs, ψ̇s)ds
}

,

the infimum being taken over the same triples as above. Developing θ(x) − θ(y), we can
write

sup
{

∫ t

0

〈∇θ(φs), ψ̇s〉ds−

∫ t

0

〈∇θ(φs), ψ̇s − φ̇s〉ds−

∫ t

0

L(φs, ψ̇s)ds;

φ0 = y, φt = x, φ = Ψ(ψ)
}

≥ 0.

(4.32)

Having in mind that ψ̇s − φ̇s ∈ R+N (φs) (with R+N (φs) = {0} if φs ∈ (0, 1)d) and
|ψ̇s − φ̇s| ≤ 1 for a.e. s ∈ [0, t], we deduce

sup
{

∫ t

0

sup
n∈N (φs)

max
(

0,−〈∇θ(φs), n〉
)

+

∫ t

0

H
(

φs,∇θ(φs)
)

ds;

φ : [0, t] → [0, 1]d, φt = x, |φ̇s| ≤ 1 for a.e. s
}

≥ 0,

Despite the lack of regularity of the boundary of [0, 1]d, we can prove that, for |z − x|
small enough, N (z) ⊂ N (x). Since ∇θ and H are continuous, we deduce

sup
n∈N (x)

max
(

0,−〈∇θ(x), n〉
)

+H
(

x,∇θ(x)
)

+ εt ≥ 0,

with εt → 0 as t tends to 0. By assumption, the first term in the above left-hand side is
zero. This completes the proof.

We now prove that V is a bilateral supersolution in (0, 1)d and satisfies the second
boundary condition. The idea follows from [5, §2.3, Chapter III] and consists in reversing
the dynamic programming principle. This permits to write x as the initial condition of
the controlled trajectory φ.
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We let the reader check that for all x ∈ [0, 1]d and for all t > 0,

V (x) ≥ sup
{

V (y) −

∫ t

0

L(φs, ψ̇s)ds; (y, φ, ψ) : φ0 = x, φt = y, φ = Ψ(ψ)
}

. (4.33)

(Pay attention: there is no equality in (4.33) at this stage of the paper. Equality holds
if there exists an optimal path from 0 to x. This is the reason why we are not able to
prove that V is a bilateral subsolution of the Hamilton-Jacobi equation.)

Following [5, Proposition 2.8], this shows that V is a bilateral supersolution of the
Hamilton-Jacobi equation in (0, 1)d.

We now prove the second boundary condition. As above, we assume that there exists
a continuously differentiable function θ on U ∩ [0, 1]d, U being a neighborhood of x,
such that θ(x) = V (x) and V (y) − θ(y) ≥ 0 for all y ∈ U ∩ [0, 1]d. We also assume
〈∇θ(x), n〉 ≤ 0 for all n ∈ N (x).

We choose a control ψ with a constant speed. For α ∈ R
d, we choose ψs = x+ αs for

all s ∈ [0, t]. We then define φ = Ψ(ψ). By (2.5), we can write φs = x + αs − ks, with
k̇s ∈ R+N (φs). For t small enough, φt is in U and (4.33) yields

θ(x) ≥ θ(φt) −

∫ t

0

L
(

φs, α
)

ds.

Developing θ(φt) − θ(x) as in (4.32), we obtain

∫ t

0

〈∇θ(φs), α〉ds− |α|

∫ t

0

sup
n∈N (φs)

max(0, 〈∇θ(φs), n〉)ds−

∫ t

0

L
(

φs, α
)

ds ≤ 0.

As above, we obtain

〈∇θ(x), α〉 − L(x, α) − |α| sup
n∈N (x)

max(0, 〈∇θ(x), n〉) ≤ 0.

By assumption, supn∈N (x) max(0, 〈∇θ(x), n〉) = 0. We deduce H(x,∇θ(x)) ≤ 0.

We now explain the form of the equation when the quasi-potential is continuously
differentiable on [0, 1]d \ {0}. (We exclude 0 from the set of differentiable points because
there is a boundary condition of Dirichlet type in 0: V (0) = 0. Anyhow, as seen in the
next section, there are specific examples in which V is continuously differentiable on the
whole [0, 1]d.) To this end, we introduce a modification of the gradient at the boundary.
Assuming that ∇V exists at x ∈ ∂[0, 1]d \ {0}, we set

∀i ∈ {1, . . . , d},
(

∇+V (x)
)

i
=







[

∂V/∂xi
]

(x) if 0 < xi < 1,
min

([

∂V/∂xi
]

(x), 0
)

if xi = 0,
max

([

∂V/∂xi
]

(x), 0
)

if xi = 1.

Similar modifications of the gradient of the quasi-potential appear in [24, Section II].
Following the notations introduced there in, we give another writing for ∇+V (x). We
denote by ∇TV (x) the tangential part of ∇V (x), i.e.

∀u ⊥ N (x), 〈∇TV (x), u〉 = 〈∇V (x), u〉, ∀n ∈ N (x), 〈∇TV (x), n〉 = 0.
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We also denote by e(x) the set N (x) ∩ V, so that e(x) is an orthonormal basis of the
cone generated by N (x). (It satisfies 〈e, n〉 ≥ 0 for all e ∈ e(x) and n ∈ N (x).) Then,
∇V (x) may be expressed as

∇V (x) = ∇TV (x) +
∑

e∈e+(x)

〈∇V (x), e〉e+
∑

e∈e−(x)

〈∇V (x), e〉e, (4.34)

with e+(x) = {e ∈ e(x), 〈∇V (x), e〉 > 0} and e−(x) = {e ∈ e, 〈∇V (x), e〉 < 0}. (In
what follows, we will also make use of e0(x) = {e ∈ e(x), 〈∇V (x), e〉 = 0}.) With these
notations at hand, we have

∇+V (x) = ∇TV (x) +
∑

e∈e+(x)

〈∇V (x), e〉e. (4.35)

The above expression justifies the notation ∇+V (x). We are now ready to state:

Proposition 4.14 Assume (A.1–3). If the quasi-potential V is continuously differen-
tiable on [0, 1]d \ {0}, then it satisfies

∀x ∈ (0, 1)d, H
(

x,∇V (x)
)

= 0, (4.36)

with the boundary condition

∀x ∈ ∂[0, 1]d \ {0}, H
(

x,∇+V (x)
)

= 0. (4.37)

By continuity of ∇V , we notice that (4.36) holds for all x ∈ [0, 1]d \ {0}. Moreover,
we emphasize that (4.37) is a boundary condition of Neumann type. If ∇V satisfies
the standard Neumann condition, i.e. 〈∇V (x), n〉 = 0 for all n ∈ N (x), at some x ∈
∂[0, 1]d \{0}, then ∇+V (x) and ∇V (x) are equal. In this case, (4.37) follows from (4.36).

As explained in [24, Section II], Hamilton-Jacobi equations under the standard Neu-
mann condition, i.e. 〈∇V (x), n〉 = 0 for all n ∈ N (x) and x ∈ ∂[0, 1]d \ {0}, may not
be well-posed. This explains why a weaker formulation of the boundary condition may
be necessary. Anyhow, (4.37) is slightly different from the Neumann condition given in
[24, Section II] since the original formulations in terms of viscosity solutions are different.
(The optimal control problems are a bit different.) Moreover, the existence of “angles”
along the hypercube [0, 1]d induces additional difficulties in our framework. (In compar-
ison, the boundary is assumed to be smooth in [24, Section II].)

� Proof. The proof is obvious inside the domain. (Choose θ = V in the statement.)
To prove the boundary condition, we characterize the continuously differentiable func-

tions θ such that V − θ has a local minimum at x ∈ ∂[0, 1]d \ {0}. Following the proof
of [5, Lemma 1.7, Chapter II], for a given p ∈ R

d, there exists a continuously differ-
entiable function θ (on a neighborhood of x) such that V − θ has a local minimum at
x and ∇θ(x) = p if and only if the tangential part pT of p is equal to ∇TV (x) and
〈p, n〉 ≥ 〈∇V (x), n〉 for all n ∈ N (x).

In what follows, the typical value of p is p = ∇+V (x). Indeed, (∇+V (x))T = ∇TV (x)
and 〈∇+V (x), n〉 ≥ 〈∇V (x), n〉 for all n ∈ N (x).
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If 〈∇V (x), n〉 ≤ 0 for all n ∈ N (x), then 〈∇+V (x), n〉 = 0 for all n ∈ N (x). (See
(4.35).) Hence, we can apply both conditions in (4.30). We deduce that

H
(

x,∇+V (x)
)

= 0. (4.38)

On the contrary, if 〈∇V (x), n〉 ≥ 0 for all n ∈ N (x), the result is obvious. Indeed,
∇+V (x) = ∇V (x) in this case. Since ∇V is continuous, the Hamilton-Jacobi equation
(4.37) is true up to the boundary.

The intermediate cases may be treated by a similar argument of continuity. With the
expressions (4.34) and (4.35) at hand, we set n+(x) =

∑

e∈e+(x)∪e0(x) e and, for ε > 0,

yε = x − εn+(x). For ε small enough, we have N (yε) = e−(x) (if e−(x) is empty then
yε ∈ (0, 1)d and N (yε) is also empty) and, by continuity of ∇V , 〈∇V (yε), e〉 < 0 for all
e ∈ e−(x). By (4.38),

H
(

yε,∇+V (yε)
)

= 0.

As ε tends 0, ∇+V (yε) tends to ∇+V (x). Indeed, by (4.34) and (4.35),

∇+V (yε) = ∇V (yε) −
∑

e∈e−(yε)

〈∇V (yε), e〉e = ∇V (yε) −
∑

e∈e−(x)

〈∇V (yε), e〉e

−→
ε→0

∇V (x) −
∑

e∈e−(x)

〈∇V (x), e〉e = ∇+V (x).

This completes the proof.

The boundary conditions are not formulated in a complete way in Proposition 4.14.
As stated below, (4.30) implies additional conditions on the derivatives ∇αH(x,∇V (x))
and ∇αH(x,∇+V (x)). In [24, Section II], these additional conditions are formulated in a
different way: the formulation used there in is about the signs of H(x,∇V (x) + λn) and
H(x,∇+V (x) + λn) for λ ∈ R and n ∈ N (x). We let the reader see how to pass from
one formulation to another. Our formulation will be more convenient for the sequel of
the paper.

Proposition 4.15 Under the assumptions of Proposition 4.14, for all x ∈ ∂[0, 1]d \ {0},

∀e ∈ e+(x) ∪ e0(x), 〈∇αH
(

x,∇V (x)
)

, e〉 ≥ 0 and 〈∇αH
(

x,∇+V (x)
)

, e〉 ≥ 0, (4.39)

and,

∀e ∈ e−(x), 〈∇αH
(

x,∇V (x)
)

, e〉 ≤ 0 and 〈∇αH
(

x,∇+V (x)
)

, e〉 ≥ 0. (4.40)

� Proof. We fix x ∈ ∂[0, 1]d \ {0}. We start by proving that 〈∇αH(x,∇+V (x)), e〉 ≥ 0
for all e ∈ e(x).

We know that p = ∇+V (x) satisfies pT = ∇TV (x), 〈p, n〉 ≥ 〈∇V (x), n〉 and 〈p, n〉 ≥ 0
for all n ∈ N (x). For e ∈ e(x) and λ > 0, the same is true when replacing ∇+V (x)
by ∇+V (x) + λe. (Indeed, 〈e, n〉 ≥ 0.) According to the discussion led in the proof
of Proposition 4.14, we can find an admissible θ such that ∇θ(x) = ∇+V (x) + λe in
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(4.30). We deduce that H(x,∇+V (x) + λe) ≥ 0. Since H(x,∇+V (x)) = 0, we obtain
〈∇αH(x,∇+V (x)), e〉 ≥ 0.

As a by-product, the first inequality in (4.39) is true when 〈∇V (x), n〉 ≥ 0 for all
n ∈ N (x), i.e. when e−(x) is empty. In this case, ∇V (x) = ∇+V (x).

We now prove the first inequality in (4.40) when 〈∇V (x), n〉 < 0 for all n ∈ N (x), i.e.
e+(x) = e0(x) = ∅. Then, for e ∈ e−(x) and 0 < λ < |〈∇V (x), e〉|, p = ∇V (x) + λe
satisfies 〈∇V (x), n〉 ≤ 〈p, n〉 < 0 for all n ∈ N (x). By (4.30), we deduce H(x,∇V (x) +
λe) ≤ 0. Since H(x,∇V (x)) = 0, we obtain 〈∇αH(x,∇V (x)), e〉 ≤ 0.

We finally prove the first inequalities in (4.39) and (4.40) without the assumptions
e−(x) = ∅ or e+(x) = e0(x) = ∅. For e ∈ e(x) and ε > 0, we set yε = x−ε

∑

e′∈e(x),e′ 6=e e
′.

For ε > 0 small enough, N (yε) = e. If e ∈ e−(x), then 〈∇V (yε), e〉 < 0 for ε small enough.
By the above analysis, 〈∇αH(yε,∇V (yε)), e〉 ≤ 0. Letting ε tend to zero, we deduce
that 〈∇αH(x,∇V (x)), e〉 ≤ 0. If e ∈ e+(x) ∪ e0(x), we know, by the above analysis,
that 〈∇αH(yε,∇+V (yε)), e〉 ≥ 0. As ε tends to 0, ∇+V (yε) → ∇V (x). (To prove it,
it is sufficient to check that 〈∇+V (yε), e〉 → 〈∇V (x), e〉 = 0. Since 〈∇+V (yε), e〉 =
〈∇V (yε), e〉1{〈∇V (yε),e〉≥0}, this is true.) In the limit, we obtain 〈∇αH(x,∇V (x)), e〉 ≥ 0.

Uniqueness of the Solution. The above results provide the typical form, both in
the viscosity and in the classical senses, of the Hamilton-Jacobi equation satisfied by
the quasi-potential. A practical question is to identify the quasi-potential with a known
solution of the Hamilton-Jacobi equation.

Generally speaking, we are not able to prove that there is a unique continuous viscosity
solution u satisfying both u(0) = 0 and (4.29) and (4.30). By adapting the techniques
exposed in [7], we can only prove, under additional assumptions on H , that there exists at
most one bilateral subsolution u to the Hamilton-Jacobi equation inside (0, 1)d satisfying
at the same time u(0) = 0, (4.29) and (4.30). (Recall that u is a bilateral subsolution
at x ∈ (0, 1)d if H(x,∇θ(x)) = 0 for any continuously differentiable θ such that u − θ
has a local maximum at x.) We won’t perform the proof in the paper since we do not
whether the quasi-potential is a bilateral subsolution of the Hamilton-Jacobi equation
inside (0, 1)d.

Indeed, as already explained, the only thing we know is: if there exists an optimal path
from 0 to x ∈ (0, 1)d, then the quasi-potential is a bilateral subsolution of the Hamilton-
Jacobi equation. Proving the existence of optimal paths for general quasi-potentials may
be very difficult. (See e.g. [5, §2.5, Chapter III].)

Anyhow, if the quasi-potential is assumed to continuously differentiable, finding optimal
paths may be easier. (See e.g. [16] for a general result concerning the non-reflected case.)
For this reason, we feel simpler to provide a uniqueness result to the Hamilton-Jacobi
equation, but just for classical solutions. More specifically, we provide below a uniqueness
result in which we both identify the quasi-potential with a known classical solution of the
Hamilton-Jacobi equation and build optimal paths as solutions of a suitable backward
reflected differential equation.

We start with the necessary form of the optimal paths, if exist. To this end, we extend
∇+V to the whole [0, 1]d \ {0} by setting ∇+V (y) = ∇V (y) if y ∈ (0, 1)d.
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Proposition 4.16 Under (A.1–3), assume that the quasi-potential V is continuously
differentiable on [0, 1]d \ {0}. Let x ∈ [0, 1]d \ {0} and (ϕt)t≤0 be a path satisfying ϕ0 = x
and limt→−∞ ϕt = 0 and achieving the infimum in the definition of V (x). Then, (ϕt)t≤0

is absolutely continuous and verifies the backward reflected differential equation

ϕ̇t = ∇αH
(

ϕt,∇+V (ϕt)
)

− k̇t a.e. on the set {t ≤ 0 : ϕt 6= 0}, (4.41)

k being as in (2.5), i.e. k̇t ∈ N (ϕt) if ϕt ∈ ∂[0, 1]d and k̇t = 0 otherwise, and satisfying
the compatibility condition

〈k̇t,∇+V (ϕt)〉 = 0 a.e. on the set {t ≤ 0 : ϕt 6= 0}. (4.42)

(We emphasize that {t ≤ 0 : ϕt 6= 0} is an interval. Indeed, if ϕt = 0 for some t ≤ 0,
then ϕs = 0 for s ≤ t.)

� Proof. We admit for the moment the following

Lemma 4.17 For every compact subset κ ⊂ [0, 1]d \ {0}, there exists a constant cκ > 0
such that for all y ∈ κ and v ∈ R

d, |v| ≤ 1,

L(y, v) ≥ 〈v,∇+V (y)〉 + cκ
∣

∣∇αH
(

y,∇+V (y)
)

− v
∣

∣

2
. (4.43)

We then consider a path (φt)t≤0 with φ0 = x 6= 0, limt→−∞ φt = 0 and J−∞,0(φ) < +∞
(so that, without loss of generality, |φ̇t| ≤ 1 for a.e. t ≤ 0). By (3.10), we can find a
measurable mapping t ∈ (−∞, 0] 7→ (βt, nt) ∈ R+ ×N (φt) such that for a.e. t ≤ 0

Lref(φt, φ̇t) = L(φt, φ̇t + βtnt). (4.44)

(In the above formula, βt = 0 if φt ∈ (0, 1)d or φt ∈ ∂[0, 1]d and 〈φ̇t, n〉 < 0 for all
n ∈ N (φt). We refer to the proof of Theorem 3.4 for the measurability property. We also
note that |φ̇t + βtnt| ≤ 1 for a.e. t ≤ 0 since L(φt, φ̇t + βtnt) < +∞.)

For a given compact subset κ ⊂ [0, 1]d \ {0} containing x, we set Tκ = inf{T ≥ 0 :
ϕ−T 6∈ κ}. Lemma 4.17 and (4.44) yield for a.e. t ∈ [−Tκ, 0]

Lref(φt, φ̇t) ≥
〈

φ̇t + βtnt,∇+V (φt)
〉

+ cκ
∣

∣∇αH
(

φt,∇+V (φt)
)

− (φ̇t + βtnt)
∣

∣

2
.

We let the reader check that, for i ∈ {1, · · · , d}, the Lebesgue measure of the set {t ≤
0 : (φt)i ∈ {0, 1}, (φ̇t)i 6= 0} is zero. (Indeed, the path φ is a.e. differentiable.) Hence,
〈φ̇t,∇+V (φt)〉 = [d/dt](V (φt)) for a.e. t ≤ 0. We deduce that for a.e. t ∈ [−Tκ, 0]

Lref(φt, φ̇t) ≥ [d/dt]
(

V (φt)
)

+
〈

βtnt,∇+V (φt)
〉

+ cκ
∣

∣∇αH
(

φt,∇+V (φt)
)

− (φ̇t + βtnt)
∣

∣

2
.

We deduce that φ satisfies

J−∞,0(φ) ≥ V (φ−Tκ) +

∫ 0

−Tκ

Lref(φt, φ̇t)dt

≥ V (φ0) +

∫ 0

−Tκ

〈βtnt,∇+V (φt)〉dt

+ cκ

∫ 0

−Tκ

∣

∣∇αH
(

φt,∇+V (φt)
)

− (φ̇t + βtnt)
∣

∣

2
dt.

(4.45)
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Noting that 〈βtnt,∇+V (φt)〉 ≥ 0 for all t ≤ 0, we complete the proof.

� Proof of Lemma 4.17. For y ∈ κ, v ∈ R
d, |v| ≤ 1, and ε ∈ (−1, 1),

L(y, v) ≥
〈

v,∇+V (y) − ε
[

∇αH
(

y,∇+V (y)
)

− v
]〉

−H
(

y,∇+V (y) − ε
[

∇αH
(

y,∇+V (y)
)

− v
]

)

.

By Proposition 4.14, we know that H(y,∇+V (y)) = 0. Applying Taylor’s formula, in
zero, to the function

ε ∈ (−1, 1) 7→ H
(

y,∇+V (y) − ε
[

∇αH
(

y,∇+V (y)
)

− v
]

)

,

we obtain

L(y, v) ≥
〈

v,∇+V (y) − ε
[

∇αH
(

y,∇+V (y)
)

− v
]〉

+
〈

∇αH
(

y,∇+V (y)
)

, ε
[

∇αH
(

y,∇+V (y)
)

− v
]〉

− (C/2)ε2
∣

∣∇αH
(

y,∇+V (y)
)

− v
∣

∣

2
,

with C = sup{|∇2
α,αH(z,∇+V (z)−η[∇αH(z,∇+V (z))−v])|; z ∈ κ, v ∈ R

d, |v| ≤ 1, η ∈
[−1, 1]}. By the regularity of H and ∇V , the constant C is finite. Hence,

L(y, v) ≥ 〈v,∇+V (y)〉 +
(

ε− (C/2)ε2
)
∣

∣∇αH
(

y,∇+V (y)
)

− v
∣

∣

2
.

Without loss of generality, we can assume that C > 1 and choose ε = 1/C in the above
formula. This completes the proof.

In light of Proposition 4.16, we understand that the boundary conditions in Proposition
4.15 describe the shape of the optimal paths (if exist) at the boundary.

In what follows, we explain more specifically what happens in dimension two. For
example, we consider x on the boundary with x1 = 0 and x2 ∈ (0, 1). In this case
e(x) = {−e1}.

If [∂V/∂x1](x) > 0, then 〈∇V (x),−e1〉 < 0 and −e1 ∈ e−(x). By Proposition 4.15,
we know that 〈∇αH(x,∇V (x)),−e1〉 ≤ 0, i.e. 〈∇αH(x,∇V (x)), e1〉 ≥ 0. Assume to
simplify that 〈∇αH(x,∇V (x)), e1〉 > 0. By continuity, 〈∇αH(y,∇V (y)), e1〉 > 0 for
y in a neighborhood of x. If there exists an optimal path (ϕt)t≤0 reaching x at t =
0, we understand from (4.41) that (ϕt)t≤0 has to hit the boundary before reaching x.
(Otherwise, there exists ε > 0 such that (ϕt)1 > 0 for t ∈ [−ε, 0), so that (ϕ̇t)1 =
〈∇αH(ϕt,∇V (ϕt)), e1〉 > 0, and, the path cannot reach x.) This is illustrated by Figure
2 below.

Similarly, if [∂V/∂x1](x) < 0, i.e. −e1 ∈ e+(x), we know from Proposition 4.15
that 〈∇αH(x,∇V (x)), e1〉 ≤ 0. We assume to simplify that 〈∇αH(x,∇V (x)), e1〉 < 0.
For y in a neighborhood of x, 〈∇αH(y,∇V (y)), e1〉 < 0. Since [∂V/∂x1](x) < 0,
we also have [∂V/∂x1](y) < 0 and thus ∇+V (y) = ∇V (y) for y close to x. Thus,
〈∇αH(y,∇+V (y)), e1〉 < 0 for y in a neighborhood of x. Then, the first coordinate
of ϕt, i.e. (ϕt)1, is non-increasing as t grows up to 0. In particular, if ϕ−ε = 0 for
some small ε > 0, the path remains on the boundary from time −ε to time 0. In
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x

Figure 2: Typical optimal path: [∂V/∂x1](x) > 0 and 〈∇αH(x,∇V (x)), e1〉 > 0

such a case, k̇t = 〈∇αH(ϕt,∇V (ϕt)), e1〉e1 for a.e. t ∈ [−ε, 0] so that 〈∇+V (ϕt), k̇t〉 =
[∂V/∂x1](ϕt)〈∇αH(ϕt,∇V (ϕt)), e1〉 > 0. This violates the compatibility condition (4.42).
We deduce that the optimal path cannot hit the boundary in a small neighborhood of x
before reaching x. This is illustrated by Figure 3 below.

x

Figure 3: Typical optimal path: [∂V/∂x1](x) < 0 and 〈∇αH(x,∇V (x)), e1〉 < 0

The case where [∂V/∂x1](x) = 0 leads to too many different possibilities to make a
general comment. (Anyhow, an example is provided in the next section.)

Proposition 4.16 shows that, if optimal paths exist, the reflected differential equation
(4.41) is solvable. We emphasize that (4.41) is not a reflected differential equation of
standard type since the boundary condition is given by the terminal value of the tra-
jectory. In particular, solving (4.41) is more intricate than solving a standard Skorohod
problem. As shown below, the boundary conditions (4.39) and (4.40) play a crucial role
in the solvability of the equation (4.41).

Proposition 4.18 Assume (A.1–3) and that there exists a function W ∈ C([0, 1]d,R),
continuously differentiable on [0, 1]d\{0}, such that, for all x ∈ (0, 1)d, H(x,∇W (x)) = 0,
for all x ∈ ∂[0, 1]d\{0}, H(x,∇+W (x)) = 0, and, for all e ∈ e(x), 〈∇αH(x,∇+W (x)), e〉 ≥
0.

In addition, assume that, for all x ∈ ∂[0, 1]d \ {0} and for all e ∈ eW0 (x) = {e ∈
e(x), 〈∇αH(x,∇+W (x)), e〉 = 0}, there exists a neighborhood U of x such that the sign
of 〈∇W, e〉 is constant on the intersection of U with the face orthogonal to e, i.e. either

∀y ∈ U ∩ ∂[0, 1]d, e ∈ N (y) ⇒ 〈∇W (y), e〉 ≤ 0, (4.46)
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or,
∀y ∈ U ∩ ∂[0, 1]d, e ∈ N (y) ⇒ 〈∇W (y), e〉 ≥ 0. (4.47)

Then, for any x ∈ [0, 1]d \ {0}, there exist an absolutely continuous path (ϕt)t≤0 and a
real i(ϕ) ∈ (0,+∞] such that ϕt = 0 for all t ≤ −i(ϕ) if i(ϕ) < +∞, ϕ0 = x and

ϕ̇t = ∇αH
(

ϕt,∇+W (ϕt)
)

− k̇t, for a.e. t ∈ (−i(ϕ), 0], (4.48)

k being as in (2.5), i.e. k̇t ∈ N (ϕt) if ϕt ∈ ∂[0, 1]d and k̇t = 0 otherwise, and satisfying
the compatibility condition

〈k̇t,∇+W (ϕt)〉 = 0 for a.e. t ∈ (−i(ϕ), 0]. (4.49)

(Above, ∇+W (x) = ∇W (x) for x ∈ (0, 1)d.)

The additional conditions (4.46) and (4.47) permit to avoid degenerate situations in
which the sign of 〈∇W, e〉 changes at x for some e ∈ N (y). Having in mind Figures 2
and 3, this permits to determine, a priori, the shape of the optimal paths reaching x.

We emphasize that no assumption is necessary on the sign of 〈∇αH(x,∇W (x)), e〉,
e ∈ e(x). (In fact, using the convexity of H , we could prove that all the inequalities in
(4.39) and (4.40) hold for W under the assumptions of Proposition 4.18.)

� Proof. It is sufficient to prove that, for all x ∈ [0, 1]d \ {0}, there exist a real ε > 0 and
an absolutely continuous path (ϕt)−ε≤t≤0 such that ϕ0 = x and (4.48) and (4.49) hold
on [−ε, 0]. (By concatenating the local solutions, we obtain a global solution. When the
resulting path hits the origin, the concatenation procedure stops. In this case, i(ϕ) is
finite. If the path doesn’t hit the origin, i(ϕ) is infinite. In the next theorem, we will
prove under additional assumptions on W that the path tends to 0 as t tends to −∞ if
i(ϕ) = +∞.)

If x ∈ (0, 1)d, the proof is trivial. (It is sufficient to solve, locally, the backward
differential equation

ϕ̇t = ∇αH
(

ϕt,∇W (ϕt)
)

, t ≤ 0,

with the boundary condition ϕ0 = x. Since ∇αH is bounded by 1 and ∇W is continuous,
this is possible.)

If x ∈ ∂[0, 1]d \ {0}, the idea still consists in solving a backward differential equation,
without reflection, but along a face of the hypercube.

We first specify the choice of the face. By (4.46) and (4.47), there exists a neighborhood
U of x such that, for all e ∈ eW (x), the sign of 〈∇W, e〉 is constant on the intersection
of U with the face orthogonal to e. (If e ∈ e(x) \ eW0 (x), this is trivial by continuity of
∇W . If e ∈ eW0 (x), this follows from (4.46) and (4.47).) We then consider the (largest)
face f containing x and orthogonal to ef (x), with

ef (x) =
{

e ∈ e(x) : ∀y ∈ U ∩ ∂[0, 1]d, e ∈ N (y) ⇒ 〈∇W (y), e〉 ≤ 0
}

.

We denote by δ the dimension of f . We can find a subset F ⊂ {1, . . . , d}, the cardinal of
F being equal to δ, such that the family (ej)j∈F is a basis of the plane generated by f .
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We then consider the system of differential equations

(ϕ̇t)j = 〈∇αH
(

ϕt,∇+W (ϕt)
)

, ej〉, t ≤ 0, j ∈ F,

(ϕ̇t)j = 0, t ≤ 0, j ∈ {1, . . . , d} \ F,
(4.50)

with the boundary condition ϕ0 = x.
A priori, this problem isn’t well-posed, even in a small time duration. Indeed, ϕt

may leave the hypercube in a zero time so that ∇αH(ϕt,∇+W (ϕt)) may not be defined.
(Recall that xi may be 0 or 1 for some i ∈ F .) To obtain a well-posed problem, we
consider the following version

(ϕ̇t)j = 〈∇αH
(

Π[ϕt],∇+W (Π[ϕt])
)

, ej〉, t ≤ 0, j ∈ F,

(ϕ̇t)j = 0, t ≤ 0, j ∈ {1, . . . , d} \ F,
(4.51)

with the same boundary condition as above, where Π denotes the projection on the
hypercube. In the above system, either ej or −ej belongs to ef (x) for j ∈ {1, . . . , d} \F .
(That is xj = 0 or 1.) Since (ϕ̇t)j = 0 for such j’s, ef (x) ⊂ N (Π[ϕt]). For t close to zero,
Π[ϕt] ∈ U , so that 〈∇W (Π[ϕt]), e〉 ≤ 0 for e ∈ ef (x). As a by-product, 〈∇+W (Π[ϕt]), ej〉
is equal to 0 for j 6∈ F . For j ∈ F , either (Π[ϕt])j ∈ (0, 1) or (Π[ϕt])j ∈ {0, 1}. In the
first case, 〈∇+W (Π[ϕt]), ej〉 is equal to 〈∇W (Π[ϕt]), ej〉. In the second case, either ej or
−ej is a normal vector at Π[ϕt] and belongs to e(x) \ ef (x), so that 〈∇+W (Π[ϕt]), ej〉
is still equal to 〈∇W (Π[ϕt]), ej〉. We deduce that ∇+W (Π[ϕt]) may be expressed as
∑

j∈F 〈∇W (Π[ϕt]), ej〉ej in the above system. Thus, the coefficients of the system are
continuous in the neighborhood of the boundary condition, so that the problem admits
a solution on some interval [−ε, 0], ε > 0.

We now show that we can get rid of Π, at least for ε small enough. To do so, it
is enough to prove that ϕt belongs to [0, 1]d, or, equivalently, that (ϕt)j ∈ [0, 1] for
j ∈ {1, . . . , d}. For j 6∈ F , this is obvious since (ϕ̇t)j = 0. We thus assume j ∈ F . If
(Π[ϕt])j > 0, then (ϕt)j = (Π[ϕt])j > 0. If (Π[ϕt])j = 0, then −ej is a normal vector
to the hypercube at Π[ϕt]. By the boundary conditions satisfied by W , this implies
〈∇αH(Π[ϕt],∇+W (Π[ϕt])),−ej〉 ≥ 0. In this case, (ϕ̇t)j ≤ 0. As t decreases on [−ε, 0],
(ϕt)j cannot go below 0. Similarly, it cannot go beyond 1. We deduce that, for ε small
enough, (4.50) holds true.

We finally prove that (4.48) holds on [−ε, 0]. We can always write

ϕ̇t = ∇αH
(

ϕt,∇+W (ϕt)
)

−
∑

j∈{1,...,d}\F

〈∇αH
(

ϕt,∇+W (ϕt)
)

, ej〉ej

= ∇αH
(

ϕt,∇+W (ϕt)
)

− k̇t,

with

k̇t =
∑

j∈{1,...,d}\F

〈∇αH
(

ϕt,∇+W (ϕt)
)

, ej〉ej =
∑

e∈ef (x)

〈∇αH
(

ϕt,∇+W (ϕt)
)

, e〉e.

Since ef (x) ⊂ N (ϕt), 〈∇αH(ϕt,∇+W (ϕt)), e〉 ≥ 0 for all e ∈ ef (x). We deduce that
(kt)−ε≤t≤0 (with k0 = 0) satisfies (2.5). The compatibility condition is obviously true.

We are now in position to state an identification property for the quasi-potential.
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Theorem 4.19 In addition to (A.1–4), assume that, for all x ∈ [0, 1]d\{0}, 〈x, f̄(x)〉 <
0. Assume also that there exists a function W satisfying the conditions of Proposition
4.18 such that W (0) = 0. Then W is equal to the quasi-potential and the infimum in
the quasi-potential is attained at (ϕt)t≤0 given by Proposition 4.18. (We show below that
such a path satisfies limt→−∞ ϕt = 0).

In the proof, we use the following lemma (the proof is given in Appendix, see Subsection
7.2).

Lemma 4.20 Under (A.1–3), for any x ∈ [0, 1]d, the mapping α ∈ R
d 7→ H(x, α) is

strictly convex at 0, i.e. the matrix ([∂2H/∂αi∂αj ](x, 0))i,j∈{1,...,d} is positive definite.

� Proof of Theorem 4.19. We first prove that V ≥ W . For a given x ∈ [0, 1]d \ {0},
we can consider a path (ψt)t≤0 from 0 to x, i.e. limt→−∞ ψt = 0 and ψ0 = x, such that
J−∞,0(ψ) ≤ V (x) + δ for some δ > 0. Then, ψ is absolutely continuous. For a.e. t ≤ 0
such that ψt ∈ (0, 1)d, we have

Lref(ψt, ψ̇t) = L(ψt, ψ̇t) ≥ 〈ψ̇t,∇W (ψt)〉 −H(ψt,∇W (ψt)) = [d/dt](W (ψt)), (4.52)

since W satisfies the Hamilton-Jacobi equation. The same holds for t satisfying ψt ∈
∂[0, 1]d \ {0} and 〈ψ̇t, n〉 < 0 for all n ∈ N (ψt). For t satisfying ψt ∈ ∂[0, 1]d \ {0} and
∃n ∈ N (ψt) such that 〈ψ̇t, n〉 = 0, we claim

Lref(ψt, ψ̇t) = inf
β>0,n∈N (ϕt),n⊥ψ̇t

L(ψt, ψ̇t + βn)

≥ inf
β>0,n∈N (ψt),n⊥ψ̇t

[

〈∇+W (ψt), ψ̇t + βn〉 −H
(

ψt,∇+W (ψt)
)]

= inf
β>0,n∈N (ψt),n⊥ψ̇t

[

〈∇+W (ψt), ψ̇t + βn〉
]

,

by the boundary condition of the Hamilton-Jacobi equation. By definition of ∇+W , we
have 〈∇+W (ψt), n〉 ≥ 0 for all n ∈ N (ψt). Hence, for t satisfying ψt ∈ ∂[0, 1]d \ {0} and
∃n ∈ N (ψt) such that 〈ψ̇t, n〉 = 0, we have

Lref(ψt, ψ̇t) ≥ 〈∇+W (ψt), ψ̇t〉. (4.53)

For every i ∈ {1, . . . , d}, the Lebesgue measure of the set {t ≤ 0 : (ψt)i ∈ {0, 1}, (ψ̇t)i 6=
0} is zero. Hence, we can replace 〈∇+W (ψt), ψ̇t〉 by 〈∇W (ψt), ψ̇t〉 = [d/dt](W (ψt)) in
the above inequality. By (4.52) and (4.53), we have

Lref(ψt, ψ̇t) ≥ [d/dt](W (ψt)) for a.e. t such that ψt 6= 0.

Setting i(ψ) = inf{T ≥ 0, ψ−T = 0} and integrating from −i(ψ) to 0 (i(ψ) being possibly
equal to +∞), we deduce that V (x) + δ ≥ W (x). Letting δ tend to 0, we deduce that
V (x) ≥W (x).

We now prove that V ≤W . We consider consider the path (ϕt)t≤0 given by Proposition
4.18. Recall from [16, Chapter 5, (1.5)] that L(y,∇αH(y, v)) = 〈v,∇αH(y, v)〉 −H(y, v)
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for all (y, v) ∈ [0, 1]d × R
d. By the Hamilton-Jacobi equation satisfied by W and by the

compatibility condition (4.49), we obtain, for a.e. −i(ϕ) < t ≤ 0,

L(ϕt, ϕ̇t + k̇t) = 〈∇+W (ϕt), ϕ̇t + k̇t〉 −H
(

ϕt,∇+W (ϕt)
)

= 〈∇+W (ϕt), ϕ̇t〉 = [d/dt]
(

W (ϕt)
)

,
(4.54)

the last equality following from the same observation as above: for every i ∈ {1, . . . , d},
the Lebesgue measure of the set {t ≤ 0 : (ϕt)i ∈ {0, 1}, (ϕ̇t)i 6= 0} is zero. Hence, for
any T > 0, T ≥ i(ϕ),

V (ϕ−T , x) ≤

∫ 0

−T

Lref(ϕt, ϕ̇t)dt ≤

∫ 0

−T

L(ϕt, ϕ̇t + k̇t)dt ≤W (x) −W (ϕ−T ).

If i(ϕ) < +∞, the proof is over by choosing T = i(ϕ). Otherwise, we have to prove that
0 is an accumulation point of the path (ϕt)t≤0.

Assume for a while that there exists ε > 0 such that, for all t ≤ 0, |ϕt| > ε.
(In particular, i(ϕ) = +∞.) By assumption, we know that, for all z ∈ [0, 1]d \ {0},
〈z,∇αH(z, 0)〉 = 〈z, f̄(z)〉 < 0. (Recall that f̄(z) = ∇αH(z, 0).) By continuity of ∇αH ,
we can find a real η > 0 such that

inf
{

〈z,∇αH(z, v)〉; z ∈ [0, 1]d, |z| ≥ ε, v ∈ R
d, |v| ≤ η

}

< 0. (4.55)

Moreover, it is plain to see that for a.e. t ≤ 0

[d/dt][|ϕt|
2] = 2〈ϕt,∇αH

(

ϕt,∇+W (ϕt)
)

〉 − 2〈ϕt, k̇t〉

≤ 2〈ϕt,∇αH
(

ϕt,∇+W (ϕt)
)

〉.

(Indeed, if (ϕt)i < 1, then (ϕt)i(k̇t)i = 0, and, if (ϕt)i = 1, then (k̇t)i ≥ 0.) By (4.55), we
deduce that there exists a constant c ∈ (0, 1) such that

−[d/dt]
[

|ϕt|
2
]

≥ c1{|∇+W (ϕt)|≤η} − c−11{|∇+W (ϕt)|>η}. (4.56)

By (4.54), for a.e. t ≤ 0,

[d/dt]
[

W (ϕt)
]

= L
(

ϕt,∇αH(ϕt,∇+W (ϕt))
)

.

By the strict convexity of L, for all z ∈ [0, 1]d \ {0}, L(z,∇αH(z,∇+W (z))) = 0 if and
only if ∇αH(z,∇+W (z)) = f̄(z) = ∇αH(z, 0). By the strict convexity of H(z, ·) at 0,
this is equivalent to ∇+W (z) = 0. We deduce that

inf
{

L(z,∇αH(z,∇+W (z))); z ∈ [0, 1]d, |z| ≥ ε, |∇+W (z)| ≥ η
}

> 0,

if not empty (i.e. ∃z ∈ [0, 1]d, |z| ≥ ε, |∇+W (z)| ≥ η). Up to a modification of c, we
have

[d/dt]
[

W (ϕt)
]

≥ c1{|∇+W (ϕt)|>η}. (4.57)

We deduce that |{t ≤ 0 : |∇+W (ϕt)| > η}| < +∞. Hence, |{t ≤ 0 : |∇+W (ϕt)| ≤ η}| =
+∞. By (4.56), there is a contradiction. We deduce that 0 is an accumulation point of
(ϕt)t≤0. Hence, W (x) ≥ V (x) so that W (x) = V (x).
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Actually, we can prove that limt→−∞ ϕt = 0. Indeed, by (4.54), (W (ϕt))t≤0 is nonde-
creasing (and bounded). We deduce that limt→−∞W (ϕt) = 0 since 0 is an accumulation
point of the sequence (ϕt)t≤0. Hence, every accumulation point a of the sequence (ϕt)t≤0

satisfies W (a) = 0. Assume that there exists another accumulation point a 6= 0. Since
0 is an accumulation point, we can find two decreasing sequences (tn)n≥0 and (sn)n≥0,
converging to −∞, such that tn+1 < sn+1 < tn < sn for all n ≥ 0, |ϕtn| = |a|/2 for all
n ≥ 0, |ϕr| ≥ |a|/2 for all r ∈ [tn, sn] and n ≥ 0, and |ϕsn −a| → 0. By (4.56) and (4.57),
we can find some constant C > 0 (depending on a) such that t 7→ −|ϕt|2+CW (ϕt) is non-
decreasing on each [tn, sn], n ≥ 0. Hence, −|a|2/4 +CW (ϕtn) ≤ −|a−ϕsn|

2 +CW (ϕsn).
Letting n tend to +∞, we obtain a contradiction.

5 Two-Stacks Model

In this section, we consider a special case. It is a generalization of an interesting example
introduced by Maier [29]. With d = 2, E = {1, 2} and x = (x1, x2), let

p(x, i, v) =















1
2
λi[1 − g1(x1)] , v = e1

1
2
λi[1 + g1(x1)] , v = −e1

1
2
(1 − λi)[1 − g2(x2)] , v = e2

1
2
(1 − λi)[1 + g2(x2)] , v = −e2

(5.58)

with some λi ∈ (0, 1) for all i ∈ E, and some Lipschitz continuous functions g1, g2 :
[0, 1] → [0, 1), gj(z) > 0 for z > 0.

When g1 = g2 and λi = 1/2, i ∈ E, this example reduces to that of Maier (see (4) in
[29]). Here, the random environment ξ governs the probability for each coordinate to
jump, but not the jump distribution itself. Our treatment below is quite different from
[29], being more direct and leading to more general results.

From (2.4) we compute

f̄(x) = −

(

λg1(x1)
(1 − λ)g2(x2)

)

, λ =
∑

i∈E

λiµ(i).

In this example, all the assumptions (A.1–4) are satisfied. The assumption of Theorem
4.9 holds if P 2 is irreducible and g′1, g

′
2 ≥ κ′ for some constant κ′ > 0.

If both g1(0) and g2(0) are equal to zero, then f̄(0) = 0 and the reflected differential
equation (2.7) is simply the ordinary differential equation inside G. In this case, the
hitting time of the stable equilibrium 0 is infinite. If, on contrary, gj(0) > 0 for some
j ∈ {1, 2}, then the solution to the RDE (2.7) feels the reflection when hitting the j-th
axis. After hitting the boundary, it moves towards the origin along the j-th axis.

The function H can be expressed in terms of

Hj(xj , αj) = ln
[

coshαj − gj(xj) sinhαj
]

, j = 1, 2.

From (3.4), H(x, α) is the logarithm of the largest eigenvalue of the matrix

Q(x, α) =
[

P (i, j)
{

λie
H1(x1,α1) + (1 − λi)e

H2(x2,α2)
}]

i,j∈E
. (5.59)



38 COMETS, DELARUE AND SCHOTT

Recall that E = {1, 2}. By solving the characteristic equation, we find, with shorthand
notations P (i, j) = Pij ,

H(x, α) = ln
1

2

(

P11A1 + P22A2 +

√

(

P11A1 − P22A2

)2
+ 4P12P21A1A2

)

with

{

A1(x, α) = λ1e
H1(x1,α1) + (1 − λ1)e

H2(x2,α2) ,
A2(x, α) = λ2e

H1(x1,α1) + (1 − λ2)e
H2(x2,α2) .

5.1 Identification of the Quasi-potential

Although its expression does not look very explicit, the quasi-potential is quite simple. It
can be guessed by observing that the discrete walk Xn has an invariant measure, which
obeys a large deviations principle: in view of [16, Chapter 4, Theorem 4.3], the rate
function – which is explicit here – should be the quasi-potential.

In Maier’s paper, the quasi-potential was identified by a Lagrangian approach and using
the special structure of the separable Hamiltonian [29, p.397]. Our approach here is an
alternative yielding to a much shorter route for more general Hamiltonians.

We start to look for the invariant measure. The Markov chain on {0, 1/m, . . . , 1} with
nearest neighbor transitions (1/2)[1 ∓ g1(x1)] from x1 to x1 ± 1/m (pay attention to
the change of sign between ∓ and ±) with reflection at 0 and 1 has an invariant (even
reversible) measure given for z = k/m by

π
(m)
1 (k/m) =

1

1 + g1(
k
m

)

k−1
∏

l=0

1 − g1(
l
m

)

1 + g1(
l
m

)
, 0 < k < m,

and π
(m)
1 (0) = (1−g1(0))/[2(1+g1(0))] and π

(m)
1 (m) = (1/2)

∏m−1
l=0 (1−g1(

l
m

))/(1+g1(
l
m

)).
When the function g1 is Lipschitz continuous, we obtain for large m and z ∈ (0, 1),

π
(m)
1 (z) = exp







[mz]
∑

l=1

ln
1 − g1(

l
m

)

1 + g1(
l
m

)
+ O(1)







= exp

{

−2m

∫ z

0

tanh−1(g1(y))dy + o(m)

}

(5.60)

since tanh−1(t) = (1/2) ln[(1 + t)/(1− t)]. We define π
(m)
2 similarly, with g2 instead of g1.

The second observation is that the measure

ν(m)(x, i) = π
(m)
1 (x1)π

(m)
2 (x2)µ(i) (5.61)

is invariant for our Markov chain (X
(m)
n /m, ξn)n≥0. Indeed, invariance of π

(m)
1 for the

corresponding transition implies

∀y ∈ [0, 1]2 ∩ (m−1
Z

2),
∑

x1∈{0,1/m,...,1}

π
(m)
1 (x1)q

(

(x1, y2), i, (y1 − x1)e1
)

= λiπ
(m)
1 (y1).
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Hence, for all j ∈ E and y ∈ [0, 1]2 ∩ (m−1
Z

2),
∑

i∈E

∑

x∈{0,1/m,...,1}2

π
(m)
1 (x1)π

(m)
2 (x2)µ(i)P (i, j)q(x, i, y − x)

=
∑

i∈E

∑

|x1−y1|=1,x2=y2 or|x2−y2|=1,x1=y1

π
(m)
1 (x1)π

(m)
2 (x2)µ(i)P (i, j)q(x, i, y − x)

=
∑

i∈E

P (i, j)µ(i)[λi + (1 − λi)]π
(m)
1 (y1)π

(m)
2 (y2)

= π
(m)
1 (y1)π

(m)
2 (y2)µ(j)

As a by product, the first marginal ν
(m)
0 of ν(m), i.e. ν

(m)
0 (y) = π

(m)
1 (y1)π

(m)
2 (y2), is itself

invariant for (X
(m)
n /m)n (which is not a Markov chain). From the relation (5.60) it is

clear that this new measure satisfies a large deviations principle, with rate function

W (x) = 2

∫ x1

0

tanh−1(g1(y))dy + 2

∫ x2

0

tanh−1(g2(y))dy (5.62)

By [16, Chapter 4, Theorem 4.3], we then expect W to be the quasi-potential. By
Proposition 4.19, we prove that this equality indeed holds.

Theorem 5.1 The function W coincides with the quasi-potential. Moreover, for any
point x ∈ [0, 1]d \ {0}, there is one and only one optimal path (ϕt)t≤0 from 0 to x. The
time reversed path (ϕ−t)t≥0 is the unique solution to the reflected differential equation
given by the law of large numbers (see Corollary 3.3), i.e. ϕt = χx−t for all t ≤ 0.

� Proof. We check that all the assumptions of Proposition 4.19 are fulfilled.
First Step. Hamilton-Jacobi Equation. The function W is clearly smooth. The gradient

is given by
∇W (x) = 2

(

tanh−1(g1(x1)), tanh−1(g2(x2))
)

(5.63)

On the boundary, ∇+W (x) = 2(0, tanh−1(g2(x2))) for x1 = 0 and x2 ∈ (0, 1], ∇+W (x) =
2(tanh−1(g1(x1)), 0) for x1 ∈ (0, 1] and x2 = 0, ∇+W (x) = ∇W (x) for x1 = 1 and
x2 ∈ (0, 1] and for x1 ∈ (0, 1] and x2 = 1. For x = 0, we have ∇+W (x) = 0.

We recall the hyperbolic trigonometric identities

tanh a =
2g

1 + g2
, sinh a =

2g

1 − g2
for a = 2 tanh−1(g)

For j = 1, 2, the quantity exp(Hj(xj , αj)) = cosh(αj) − gj(xj) sinh(αj) is equal to 1 iff
αj = 0 or αj = 2 tanh−1 gj(xj). From (5.59), we deduce that Q(x,∇+W (x)) = P for
every x ∈ [0, 1]2. (With ∇+W (x) = ∇W (x) for x ∈ (0, 1)2.) Hence, the largest eigenvalue
of Q(x,∇+W (x)) is 1. We deduce that W satisfies the Hamilton-Jacobi equation (4.36)
–(4.37).

Second Step. Identification of W . We first compute the gradient of H , with respect to
α, in (x,∇+W (x)), x ∈ [0, 1]d. Since, for all j ∈ {1, 2},

∂Hj

∂αj
(xj, αj) =

sinh(αj) − gj(xj) cosh(αj)

cosh(αj) − gj(xj) sinh(αj)

= gj(xj) for αj = [∂W/∂xj ](x) ,
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we have

∂Q

∂α1
(x,∇W (x)) = [P (i, j)λig1(x1)]i,j∈E ,

∂Q

∂α2
(x,∇W (x)) = [P (i, j)(1 − λi)g2(x2)]i,j∈E .

(5.64)
By simplicity of the top eigenvalue we know that H(x, ·) is differentiable. For the same
reason, the associated eigenvector v(x, α) is smooth in α. We thus differentiate the
equation Q(x, α)v(x, α) = exp(H(x, α))v(x, α) at α = ∇W (x). At such a point, Q = P ,
H = 0 and v = 1 = (1, . . . , 1)t, so that

∂Q

∂α1

(x,∇W (x))1 + P
∂v

∂α1

(x,∇W (x)) =
∂H

∂α1

(x,∇W (x))1 +
∂v

∂α1

(x,∇W (x)). (5.65)

From (5.64) we have [∂Q/∂α1](x,∇W (x))1 = g1(x1)~λ with ~λ = (λi)i∈E , and by multiply-
ing (5.65) by the invariant measure µ on the left, we get [∂H/∂α1](x,∇W (x)) = λg1(x1).
With a similar computation for the partial derivative with respect to α2, we finally obtain

∇αH(x,∇W (x)) =

(

λg1(x1)
(1 − λ)g2(x2)

)

= −f̄ (x) . (5.66)

Repeating the computations from (5.63) to (5.66), we have

∇αH
(

x,∇+W (x)
)

=















(

f̄1(0)
−f̄2(x2)

)

, for x1 = 0, x2 ∈ (0, 1],
(

−f̄1(x1)
f̄2(0)

)

, for x1 ∈ (0, 1], x2 = 0.
(5.67)

It is plain to check that the assumptions of Proposition 4.18 are fulfilled. Therefore, W
is the quasi-potential.

Third Step. Optimal Paths. For a terminal value x ∈ [0, 1]2 \ {0}, we have to prove
that the time reversed path (χx−t)t≤0 satisfies (4.48) as well as (4.49). It is sufficient to
prove it locally: we prove that, for any x, (χx−t)−ε≤t≤0 satisfies both (4.48) and (4.49) on
a small interval [−ε, 0] for some ε > 0. By (5.66), this is easily checked if the terminal
point x belongs to (0, 1)2. If the terminal point x belongs to the boundary, several cases
are to be considered.

If x1 = 0 and x2 ∈ (0, 1], the path (χxt )t≥0 remains on {0} × [0, 1], so that (χ̇xt )1 = 0
for t ≥ 0. For some ε > 0, we have (χxt )2 ∈ (0, 1] for t ∈ [0, ε]. By (5.67), the second
coordinate satisfies (χ̇xt )2 = −〈∇αH(χxt ,∇+W (χxt )), e2〉 for t ∈ [0, ε]. Setting ϕt = χx−t
for all t ∈ [−ε, 0], we have

ϕ̇t = ∇αH
(

ϕt,∇+W (ϕt)
)

− f̄1(0)e1,

so that (ϕt)ε≤t≤0 satisfies (4.48). Since 〈∇+W (0, y), e1〉 = 0 for all y ∈ [0, 1], the compat-
ibility condition is fulfilled. The same holds if x2 = 0 and x1 ∈ (0, 1].

If x1 = 1 and x2 ∈ (0, 1], then the path (χxt )t≥0 leaves the boundary immediately: for
t > 0 (and t small), χxt ∈ (0, 1)2. Reversing the path, we conclude as above. The same
holds if x2 = 1 and x1 ∈ (0, 1].
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Fourth Step. Uniqueness of the Optimal Path. It remains to verify that the solutions
to (4.48) are unique. Again, it is sufficient to prove that uniqueness holds locally for
any starting point in [0, 1]2 \ {0}. If the starting point is in (0, 1)2, this is obvious by
time reversal. If x1 = 0 and x2 ∈ (0, 1], we have 〈∇αH(x,∇W (x)), e1〉 = −f̄1(0) ≥ 0.
Assume for the moment that −f̄1(0) > 0. Then, by Figure 2, any solution (ϕt)t≥0 to
(4.48) touches the boundary before reaching x. Hence, there exists ε > 0 such that
(ϕt)1 = 0 and (ϕ̇t)2 = −f̄2((ϕt)2) for all t ∈ [−ε, 0]. Local uniqueness easily follows.
Assume now that f̄1(0) = 0. Then, for all y in the neighborhood of x, with y1 > 0,
〈∇αH(y,∇W (y)), e1〉 = −f̄1(y1) > 0. Again, any solution (ϕt)t≥0 to (4.48) has to touch
the boundary before reaching x (otherwise, it cannot reach the boundary) and we can
repeat the argument. The same holds for x2 = 0 and x1 ∈ (0, 1]. The case where x1 = 1
and x2 ∈ (0, 1) corresponds (up to a symmetry) to Figure 3 and local uniqueness is proved
in a similar way. The cases where x2 = 1 and x1 ∈ (0, 1) and where (x1, x2) = (1, 1) are
similar.

5.2 Deadlock Phenomenon for the Two-Stacks Model

We discuss the deadlock phenomenon for the two-stacks model, that is for the domain G
from (4.11) with ℓ = 1. Our results should be compared to Section 5 in [29]. In view of
Theorems 4.2 and 5.1, the set of exit points M relates to the simple, one-dimensional,
variational problem

V̄ = min{W (z, 1 − z); z ∈ [0, 1]}.

Then, x ∈ M if and only if x = (z, 1 − z) with z minimizing the above problem.
Observing that [d/dz](W (z, 1− z)) = 2(tanh−1(g1(z))− tanh−1(g2(1− z))) has the same
sign as g1(z)−g2(1−z), we distinguish a few remarkable different regimes (some of them
being discussed in [29]) for the set M of deadlock configurations and for the shape of the
optimal paths (which describe the typical course of a deadlock).

Qualitative shape of optimal paths. For x = (x1, x2) ∈ (0, 1)2, we discuss the
optimal path (ϕt)t≤0 from 0 to x. By Theorem 5.1, ϕt = χx−t for all t ≤ 0. As long as
the k-th coordinate (k = 1, 2) of ϕt is positive, it satisfies (ϕ̇t)k = −f̄k((ϕt)k). Hence, the
time needed to make the k-th coordinate move from 0 to xk is

tk = tk(xk) = −

∫ xk

0

dr

f̄k(r)
∈ (0,∞].

Note that tk is finite if the continuous function f̄k (or equivalently gk) is non zero at 0,
but tk is infinite if f̄k(0) = 0 (since f̄k is Lipschitz continuous, |f̄k(r)| ≤ Cr for r > 0 in
this case). In general, the duration of the instanton ϕ from 0 to x is equal to max{t1, t2}.

1. (Case A). g1(0) = g2(0) = 0. Then ϕ has an infinite duration. It never hits the
boundary and does not feel the reflection. When g1 = g2, x1 = x2 and λ = 1/2, the
optimal path is the line segment [x, 0]. But in general, the optimal path is not a
line.
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2. (Case B). g1(0) > 0, g2(0) > 0. Then, the optimal path has a finite duration.
There is a smooth curve of points x’s such that the reversed path from x to 0 does
not hit the axis (strictly) before 0: the curve is in fact defined by t1(x1) = t2(x2).
For x’s such that t1(x1) < t2(x2), χ

x hits the vertical axis (strictly) above 0, and
later on, moves down towards 0 along this axis.

3. (Case C). g1(0) > 0, g2(0) = 0. For all x ∈ (0, 1)2, ϕ hits the vertical axis in a
finite time, and later on, moves down towards 0 along this axis reaching it in infinite
time.

Some optimal paths are shown in Figures 4 and 5 below.

x2

x1

0

(z∗, 1− z∗)

(

λg1(z
∗), (1−λ)g2(1−z∗)

)

optimal path

G

1

1

Figure 4: Optimal deadlock point and path, Case 1 with λ < 1/2, g1(0) = g2(0) = 0

Some specific cases for the set M.

1. (Case 1). Assume that g1 and g2 are strictly increasing on [0, 1]. Then x1 ∈ [0, 1] 7→
W (x1, 1 − x1) is a strictly convex function so that M reduces to a single point. If
g1(0) ≥ g2(1), then the function is increasing and the minimum is attained at x1 = 0,
so that M = {(0, 1)}. If g1(1) ≤ g2(0), the function is decreasing and the minimum
is attained at x1 = 1, so that M = {(1, 0)}. If g1(0) < g2(1) and g2(0) < g1(1),
then the slope is negative at 0 and positive at 1, so that M = {(z∗, 1 − z∗)}, with
z∗ ∈ (0, 1), the unique solution of g1(z

∗) = g2(1 − z∗). This case is illustrated by
Figures 4 and 5.

2. (Case 2) Assume g1(z) = g2(1 − z) for all z ∈ [a, b] (0 < a < b < 1), and g1

[resp. g2] strictly increasing on [0, a]
⋃

[b, 1] [resp. on [0, 1 − b]
⋃

[1 − a, 1]]. Then,
g1(z)−g2(1−z) – as well as [d/dz](W (z, 1−z)) – is increasing [resp. zero, increasing]
on the interval [0, a] [resp., [a, b], [b, 1]]. Now, the set of minimizers is the interval,

M = segment
[

(a, 1 − a), (b, 1 − b)
]

as indicated in Figure 6.
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x1

0

(z∗, 1− z∗)optimal path

G

1

1

Figure 5: Optimal deadlock point and path, Case 1 with g1(0) > 0, g2(0) > 0, and the
exit point (z∗, 1 − z∗) in the general situation

3. (Case 3) Assume g1(z)− g2(1− z) is negative on [0, a), positive on (a, c), negative
on (c, b) and positive on (b, 1] (0 < a < c < b < 0). Then, W (z, 1 − z) is a
double-wells, and the set of minimizers is a pair,

M = {(a, 1 − a), (b, 1 − b)}

see Figure 7.

By Theorem 5.1, there is a one-to-one correspondence between elements of M and
optimal path (so-called instantons) to exit G. Therefore, there is a unique optimal path
for the deadlock in Case 1, uncountably many in Case 2, and exactly two in Case 3.

6 Limit Cycle

In this section we work out an example where the system has, in the large scale limit
m → ∞, a stable attractor, which is a limit cycle. Denote by 1 the vector (1, 1)t, and
consider the differential system in R

2,

ẋt = h(xt)

with

h(x) =

(

0 −1
1 0

)

(

x−
1

4
1
)

+
1

2

[

1 − 64 × |x−
1

4
1|2

](

x−
1

4
1
)

, (6.68)

whose phase portrait is given in Figure 8. The circle C centered at 1/4 with radius 1/8 is
a stable limit set: trajectories spiral into it as time approaches infinity. More precisely,
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0

x2

x1a b

M′

G

1

1

Figure 6: Optimal deadlock points, Case 2

0

x2

x1a b

M′

G

1

1

Figure 7: Optimal deadlock points, Case 3

it can be checked that any point in [0, 1]2 is attracted by C. Moreover, the vector field
on the axis is pointing inside the first quadrant, and, for ℓ ∈ [1, 2], the vector field on the
sloping side |x|1 = ℓ is pointing inside the domain G.

Obviously, the reason for the existence of the limit cycle is that the vector field is the
superposition of

h1(x) =

(

0 −1
1 0

)

(

x−
1

4
1
)

(6.69)

– a rotation around the center (1/4)1 which preserves the norm of the vector (x−(1/4)1)–,
and of

h2(x) =
1

2

[

1 − 64 × |x−
1

4
1|2

]

(

x−
1

4
1
)

(6.70)

– whose effect is moving the system on the radius issued at the center towards the
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Figure 8: An ordinary differential equation with a limit cycle

intersection of the radius and the circle C– . It is plain to check that the components of
h1, h2 are bounded on [0, 1]2 by a constant strictly smaller than 32. Let E = {1, 2}, and
assume that µ is the Bernoulli law µ(1) = µ(2) = 1/2. With h(1), h(2) the components of
h ∈ R

2, define the transition by

p(x, i, v) =

{

1
4

(

1 ± 1
32
h

(1)
i (x)

)

for v = ±e1
1
4

(

1 ± 1
32
h

(2)
i (x)

)

for v = ±e2
, i = 1, 2 (6.71)

Since µ is Bernoulli, the limit ordinary differential equation (3.2) is given here by

f̄(x) =
1

128
h(x)

with h from (6.68). Assumptions (A.1–3) are fulfilled, as well as the counterpart to
(A.4) – with the attractor C replacing the stable fixed point 0. Most of the results
of Section 4 can be generalized to this case, with the quasi-potential computed as the
minimal action over all paths from C to the current point. For instance, (4.13) becomes

Exm [τ (m)] = exp
[

m(V̂ + o(1))
]

for any sequence xm → x ∈ G, with

V̂ = inf{J0,T (φ); φ0 ∈ C, |φT |1 = ℓ, T > 0} .

We cannot compute the exact value of the quasi-potential in this example, but it could
be estimated numerically from above. Following [16, Chapter 5, Theorem 4.3], we could
also provide a suitable version of Proposition 4.19.

7 Appendix A

7.1 Proof of Lemma 4.10: successful coupling

The proof relies on a tricky coupling argument. In [30], the authors investigate the large
deviations for stochastic differential equations with a small noise: the coupling argument
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then follows from standard arguments for the Brownian motion. In our own setting, the
standard stochastic analysis tools are useless and we need to construct a coupling for our
purpose.

Coupling. For an initial condition x ∈ Z
d, |x|1 < δm, the position of the walker is

given by

Xn+1 = (2Π(m) − Id)
(

Xn + f(Xn/m, ξn, Un)
)

,

with X0 = x. Here, f(z, i, ·) denotes a function from (0, 1) to V such that f(z, i, U) has
p(z, i, ·) as distribution (typically, f(z, i, ·) is an inverse of the cumulative distribution
function of p(z, i, ·)). For another initial condition y ∈ Z

d, |y|1 < δm, the position of
the walker can be defined in a similar way. The realizations (Un)n≥0 may be the same.
Nevertheless, the position may be defined with a different sample of uniform law. It may
be also defined with the same sample but with a different function f .

In what follows, we are seeking for a copy (X̂n)n≥0 of the walk, starting from y, such

that X̂ and X join up in a finite time. For this purpose, we assume |x − y|1 ∈ 2N

(otherwise, it is impossible). We will use the same sample of uniform law but a different
function f . We thus write

X̂n+1 = (2Π(m) − Id)
(

X̂n + f̂n(Un)
)

,

where f̂n is some random function from (0, 1) into V, depending on Xn, X̂n and ξn such
that the conditional law of f̂n(Un) with respect to (Xn, X̂n, ξn) is exactly p(X̂n, ξn, ·). The
explicit form of f̂n has to be determined.

To simplify, we will just denote (when possible) f̂n(Un) by f̂n. Similarly, we will denote
f(Xn/m, ξn, Un) by fn (or fn(Un) when necessary).

Before providing an explicit form for f̂n, we investigate the L1-distance ∆n = |Xn−X̂n|1.
Loosely speaking, we want it to decrease with n. We thus compute ∆n+1 in terms of ∆n.
For this purpose, it is crucial to note that ∆n is always even (because of the particular
choice for the initial conditions and for the reflection). We also recall the formula

∀a, b ∈ R, |a+ b| = |a| + |b| − 2(|a| ∧ |b|)1{ab<0}.

If Xn and X̂n are not on the boundary, we deduce

|∆n+1|1 = |∆n|1 + |fn − f̂n|1 − 2

d
∑

i=1

[|(∆n)i| ∧ |(fn)i − (f̂n)i|]1{(∆n)i((fn)i−(f̂n)i)<0}. (7.1)

If one of the two processes is on the boundary at time n, the difference |∆n+1|1 − |∆n|1
has the form |∆n + gn − ĝn|1 − |∆n|1 with gn and ĝn as in (2.3). We can check that it is
always bounded by |∆n + fn − f̂n|1 − |∆n|1. In other words, we can forget the reflection.
To prove this assertion, it is sufficient to focus on each coordinate. If (Xn)i = 0 and
(X̂n)i ≥ 2, the proof is obvious. If (Xn)i = 0 and (X̂n)i = 1, the proof is the same except
for (X̂n+1)i = 0 and (Xn)i+1 = 1. In this case, the processes switch. However, the result
is still true. Other cases are treated in a similar way. Hence, in any case, (7.1) is true
with ≤ instead of =.
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Turn back to (7.1). Again, |fn− f̂n|1 is always equal to 2, except for fn = f̂n. To handle
the last term, we introduce the following notations

E+
n (resp. E−

n , resp. E0
n) = {u ∈ V : 〈∆n, u〉 > 0 (resp. < 0, resp. = 0)}.

If fn = −f̂n ∈ E−
n , the sum is equal to min(|〈∆n, fn〉|, 2). If fn = f̂n or fn = −f̂n ∈

E+
n ∪ E0

n, the sum is zero. If fn ⊥ f̂n, |(fn)i − (f̂n)i| is 0 or 1 and (|(∆n)i| ∧ |(fn)i −
(f̂n)i|)1{(∆n)i((fn)i−(f̂n)i)<0} = |(fn)i− (f̂n)i|1{(∆n)i((fn)i−(f̂n)i)<0} is also 0 or 1: it is equal to

1 if and only if fn ∈ E−
n and i is the coordinate of fn or f̂n ∈ E+

n and i is the coordinate
of f̂n. Hence,

|∆n+1|1 ≤ |∆n|1 + 2 − 21{fn=f̂n}
− 21{fn⊥f̂n}

(

1{fn∈E
−

n } + 1{f̂n∈E
+
n }

)

− 2[|〈∆n, fn〉| ∧ 2]1{fn=−f̂n,fn∈E
−

n }.

Noting that {fn ⊥ f̂n} is the complementary of {fn = f̂n} ∪ {fn = −f̂n}, we have

|∆n+1|1 ≤ |∆n|1 + 2 − 21{fn=f̂n}
− 2

(

1{fn∈E
−

n } + 1{f̂n∈E
+
n }

)

+ 2
(

1{fn∈E
−

n } + 1{f̂n∈E
+
n }

)(

1{fn=f̂n}
+ 1{fn=−f̂n}

)

− 2[|〈∆n, fn〉| ∧ 2]1{fn=−f̂n,fn∈E
−

n }.

We have {fn = f̂n} = {fn = f̂n ∈ E+
n } ∪ {fn = f̂n ∈ E−

n } ∪ {fn = f̂n ∈ E0
n}. Moreover

{fn = −f̂n ∈ E−
n } = {f̂n = −fn ∈ E+

n }. Hence,

|∆n+1|1 ≤ |∆n|1 + 2 − 21{fn=f̂n∈E0
n}

− 2
(

1{fn∈E
−

n } + 1{f̂n∈E
+
n }

)

+ 41{fn=−f̂n,fn∈E
−

n } − 2[|〈∆n, fn〉| ∧ 2]1{fn=−f̂n,fn∈E
−

n }.

Finally,

|∆n+1|1 ≤ |∆n|1 + 21{fn∈E
+
n } − 21{f̂n∈E

+
n } + 21{fn∈E0

n,fn 6=f̂n}

+ 21{fn=−f̂n,fn∈E
−

n }1{|〈∆n,fn〉|=1}.
(7.2)

We claim that, for n < σ = inf{k ≥ 0 : |∆k|1 = 0} ∧ inf{k ≥ 0 : |∆k|1 > 2⌊mδ1/2⌋}
(δ small enough), we can choose f̂n such that {fn = −f̂n, fn ∈ E−

n , |〈∆n, fn〉| = 1} is
empty and such that P{fn ∈ E0

n, fn 6= f̂n| |Fn} ≤
∑

u∈E0
n
[p(Xn, ξn, u) − p(X̂n, ξn, u)]

+,

with Fn = F ξ,X,X̂
n .

The idea is the following. We define the random sets (i.e. they may depend on ξn,
Xn and X̂n): An(u) = {r ∈ (0, 1) : fn(r) = u} and Ân(u) = {r ∈ (0, 1) : f̂n(r) = u}
for u ∈ V. The Lebesgue measures of these sets are known: |An(u)| = p(Xn, ξn, u) and
|Ân(u)| = p(X̂n, ξn, u). In the sequel, we just write pn(u) and p̂n(u) for these quantities.

For each u ∈ V, An(u) is an interval (because of the construction by inversion of
the cumulative distribution function). However, the geometry of Ân(u) is free: we will
perform the coupling by choosing the form of each Ân(u) in a suitable way. Without loss
of generality, we can assume that ∪u∈E0

n
An(u) is an interval with 0 as left bound (see

Figure 9).
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For u ∈ E0
n, we can find a subinterval of An(u) of length pn(u) ∧ p̂n(u), with the same

left bound as An(u), and set for r in this interval f̂n(r) = u. Hence, P{fn = u, f̂n 6=
u|Fn} ≤ (pn(u) − p̂n(u))

+, so that

P{fn ∈ E0
n, fn 6= f̂n|Fn} ≤

∑

u∈E0
n

[p(Xn, ξn, u) − p(X̂n, ξn, u)]
+. (7.3)

This is exactly what we were seeking for.
It remains to choose f̂n such that {fn = −f̂n, fn ∈ E−

n , |〈∆n, fn〉| = 1} is empty. For
n < σ, ∆n 6= 0 and E+

n cannot be empty. Since |∆n|1 is always even, E+
n cannot count one

single vector such that |〈∆n, u〉| is odd. Hence, the set {u ∈ V : |〈∆n, u〉| ∈ 2N+1} counts
either zero element or more than two. If M = |E+

n | = 1, the set {u ∈ V : |〈∆n, u〉| ∈
2N + 1} is empty and there is nothing to do. If M ≥ 2, we can index E+

n under the form
E+
n = {v1, . . . , vM} with pn(v1) ≥ pn(v2) ≥ · · · ≥ pn(vM). Then, we can assume that the

partition related to fn is ordered as follows:

∀u ∈ E0
n, An(u) ≺ An(−v1) ≺ An(v1) ≺ An(−v2) ≺ An(v2) · · · ≺ An(−vM ) ≺ An(vM),

where B1 ≺ B2 means ∀(x, y) ∈ B1 × B2, x < y, B1 and B2 being two subsets of [0, 1]2

(see Figure 9).

0 1

E0
n −v1 −v2 −v3v1 v2 v3

Figure 9: Order for fn, M = 3.

For f̂n, we already know that Ân(u) intersects, for u ∈ E0
n, An(u) on an interval of

length pn(u)∧ p̂n(u). Then, we can complete Ân(u), if necessary, that is if p̂n(u) > pn(u),
so that ∪u∈E0

n
Ân(u) is an interval with zero as lower bound (see Figure 10). In particular,

we have
∀u ∈ E0

n, ∀v 6∈ E0
n, Ân(u) ≺ Ân(v).

Then, we can complete the partition associated to f̂n as follows

Ân(v2) ≺ Ân(−v2) ≺ Ân(v3) ≺ Ân(−v3) · · · ≺ Ãn(vM) ≺ Ân(−vM ) ≺ Ân(−v1) ≺ Ân(v1),

see Figure 10.

0 1

E0
n −v1−v2 −v3 v1v2 v3

Figure 10: Order for f̂n, M = 3.

We now prove that, for δ small enough and u ∈ E−
n , the sets An(u) and Ân(−u) are

disjoint. For 2 ≤ i ≤ M , the right boundary of Ân(vi) is given by p̂n(E
0
n) + p̂n(v2) +
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p̂n(−v2) + · · ·+ p̂n(vi) and the left boundary of An(−vi) is given by pn(E
0
n) + pn(−v1) +

pn(v1)+ · · ·+pn(−vi−1)+pn(vi−1). By the Lipschitz property of p, the difference between
pn(u) and p̂n(u) is bounded by (C/m)|Xn − X̂n|1 ≤ 2Cδ1/2 for every u ∈ V. Since
pn(v1) ≥ pn(vi), we have

pn(E
0
n) + pn(−v1) + pn(v1) + · · ·+ pn(−vi−1) + pn(vi−1)

≥ p̂n(E
n
0 ) + p̂n(−v2) + p̂n(v2) + · · · + p̂n(−vi−1) + p̂n(vi−1) + p̂n(vi) + pn(−v1) − 4Cdδ1/2

≥ p̂n(E
n
0 ) + p̂n(−v2) + p̂n(v2) + · · · + p̂n(−vi−1) + p̂n(vi−1) + p̂n(vi) + c− 4Cdδ1/2,

with c = inf{p(z, i, v); z ∈ [0, 1]d, i ∈ E, v ∈ V} > 0 (see Assumption (A.2)). For δ
small enough, we obtain Ân(vi) ∩ An(−vi) = ∅. It remains to prove the same thing for
i = 1. The right boundary of An(−v1) is given by pn(E

0
n)+pn(−v1) and the left boundary

of Ân(v1) is given by p̂n(E
0
n) + p̂n(v2) + p̂n(−v2) + · · · + p̂n(vM) + p̂n(−vM ) + p̂n(−v1) ≥

pn(E
0
n) + pn(−v1) + 2c− 4Cdδ1/2. This completes the construction of f̂n for M ≥ 2.

Hitting Time. Recall that Fn = F ξ,X,X̂
n for all n ≥ 0. By (7.2) and (7.3), we have for

δ small enough (say δ ≤ ρ0 for some ρ0 > 0) and n < σ

E
[

|∆n+1|1|Fn

]

− |∆n|1 ≤ 2(pn − p̂n)
+(E0

n) + 2pn(E
+
n ) − 2p̂n(E

+
n ), (7.4)

where (pn(·)− p̂n(·))+(A) =
∑

u∈A(pn(u)− p̂n(u))+ for any subset A of V (the same holds
for pn(A) and p̂n(A)). By (4.22) in Theorem 4.9, we have

2(pn − p̂n)
+(E0

n) + 2pn(E
+
n ) − 2p̂n(E

+
n )

= 2(pn − p̂n)
+(E0

n) + pn(E
+
n ) − p̂n(E

+
n )

+
(

1 − pn(E
0
n) − pn(E

−
n )

)

−
(

1 − p̂n(E
0
n) − p̂n(E

−
n )

)

= 2(pn − p̂n)
+(E0

n) − (pn − p̂n)(E
0
n) + (pn − p̂n)(E

+
n ) − (pn − p̂n)(E

−
n )

=
∑

u∈Λ,u⊥∆n

|pn(u) − p̂n(u)| +
∑

u∈Λ

(

pn(u) − p̂n(u)
)

sgn
(

〈∆n, u〉
)

≤ −(κ/m)|∆n|1.

By (7.4), we can write |∆n+1|1 = |∆n|1 + 2εn+1, with εn ∈ {−1, 0, 1} and E(2εn+1|Fn) ≤
−(κ/m)|∆n|1 for n < σ. Hence, E(|∆n+1|1|Fn) ≤ (1 − κ/m)|∆n|1 for n < σ, so that
((1 − κ/m)−n∧σ|∆n∧σ|1)n≥0 is a supermartingale. We deduce that, for all n ≥ 1,

2P{σ > n}(1 − κ/m)−n ≤ E[(1 − κ/m)−σ∧n|∆σ∧n|1] ≤ 2δm.

We obtain
E(σ) ≤ δm

∑

n≥0

(1 − κ/m)n ≤ C ′δm2, (7.5)

for some constant C ′ > 0.
We now investigate P{|∆σ|1 > 2⌊mδ1/2⌋}. Since ((1− κ/m)−n∧σ|∆n∧σ|1)n≥0 is a super-

martingale, we have for all n ≥ m3/2,

(1 − κ/m)−m
3/2

E
[

1{σ≥m3/2}|∆σ∧n|1
]

≤ E
[

(1 − κ/m)−σ∧n|∆σ∧n|1
]

≤ 2δm.
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Letting n tend to +∞, we deduce (changing if necessary the value of C ′)

(1 − κ/m)−m
3/2

P
{

σ ≥ m3/2, |∆σ|1 > 2⌊mδ1/2⌋
}

≤ C ′. (7.6)

It remains to see what happens for σ < m3/2. We set q+
n = P{εn = 1|Fn} and q−n =

P{εn = −1|Fn}. Conditionally to the past, the process (|∆k|1)k≥0 doesn’t move at time
n with probability 1 − (q+

n + q−n ). Conditionally to moving, it jumps with probabilities
q+
n /(q

+
n + q−n ) and q−n /(q

+
n + q−n ). Since E(εn+1|Fn) < 0, we have q+

n /(q
+
n + q−n ) < 1/2.

Hence, the time needed by the chain (|∆n|1)n≥0 to reach 2⌊mδ1/2⌋ is (stochastically) larger
than the time needed by the simple random walk to hit 2⌊mδ1/2⌋− 2⌊mδ⌋ when starting
from zero. Hence,

P
{

σ < m3/2, |∆σ|1 > 2⌊mδ1/2⌋
}

≤ P{τ2⌊mδ1/2⌋−2⌊mδ⌋ < m3/2},

where τL denotes the hitting time, by the simple random walk, of a given integer L. It is
well known (see e.g. [31, Chapter 10]) that P{τL ≤ m3/2} ≤ exp(−αL+m3/2 ln(cosh(α)))
for any α > 0. Choosing α = m−3/4, we have P{τL ≤ m3/2} ≤ exp(−Lm−3/4 +
m3/2 ln(cosh(m−3/4))). If L = ηm, for some η > 0, P{τηm ≤ m3/2} ≤ C ′ exp(−ηm1/4).
Hence (changing C ′ if necessary),

P
{

σ < m3/2, |∆σ|1 > 2⌊mδ1/2⌋
}

≤ C ′ exp(−2(δ1/2 − δ)m1/4). (7.7)

We can complete the proof of Lemma 4.10. We have, for all t ≥ S,

|Px{τ
(m) > m2t} − Py{τ

(m) > m2t}| ≤ 2P{σ > m3S or |∆σ| 6= 0}.

By (7.5), P{σ > m3S} ≤ C ′δS−1m−1. By (7.6) and (7.7), P{|∆σ| 6= 0} ≤ C ′[exp(−2(δ1/2−
δ)m1/4) + exp(−κm1/2)]. This completes the proof.

7.2 Proof of Lemma 4.20

For a given x ∈ [0, 1]d, we have to prove that the bilinear form ∇2
α,αH : λ ∈ R

d 7→
∑

i,j λiλj[∂
2H/∂αi∂αj ](x, 0) is positive definite. We first note that the bilinear form

Ef : λ ∈ R
d 7→

∑d
i,j=1

∑

k∈E µ(k)λiλj(E[(fifj)(x, k, U)] − E[fi(x, k, U)]E[fj(x, k, U)]) in-
duced by the averaged covariance matrix of the random vectors f(x, k, U) (U following
the uniform distribution on (0, 1)) is nondegenerate. Indeed, for all λ ∈ R

d, Jensen’s
inequality yields

Ef(λ) =
d

∑

i=1

∑

k∈E

µ(k)λ2
iE(f 2

i (x, k, U)) −
∑

k∈E

µ(k)
(

d
∑

i=1

λiE(fi(x, k, U))
)2

=

d
∑

i=1

∑

k∈E

λ2
iµ(k)p(x, k,±ei) −

∑

k∈E

µ(k)
(

d
∑

i=1

λi[p(x, k, ei) − p(x, k,−ei)]
)2

≥
d

∑

i=1

∑

k∈E

λ2
iµ(k)p(x, k,±ei) −

d
∑

i=1

∑

k∈E

µ(k)λ2
i

[p(x, k, ei) − p(x, k,−ei)]2

p(x, k,±ei)

=

d
∑

i=1

∑

k∈E

λ2
iµ(k)

4p(x, k, ei)p(x, k,−ei)

p(x, k,±ei)
> 0,
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with p(x, k,±ei) = p(x, k, ei) + p(x, k,−ei). In what follows, we provide an explicit
expression for ∇2

α,αH and then compare it to Ef . We know that the leading eigenvalue of
the matrix Q(x, α) (see (3.4)) is simple and equal to exp(H(x, α)). As a by-product, the
coordinates of the corresponding eigenvector v(x, α) (i.e. of the ℓ1 normalized eigenvector
with positive entries) are infinitely differentiable with respect to α. In particular, we can
differentiate twice the relationship Q(x, α)v(x, α) = exp(H(x, α))v(x, α) with respect to
αi, αj. We obtain

[ ∂Q

∂αi
v +Q

∂v

∂αi

]

(x, α) =
[(∂H

∂αi
v +

∂v

∂αi

)

exp(H)
]

(x, α)

[ ∂2Q

∂αiαj
v +

∂Q

∂αi

∂v

∂αj
+
∂Q

∂αj

∂v

∂αi
+Q

∂2v

∂αi∂αj

]

(x, α)

=
[( ∂2H

∂αi∂αj
v +

∂H

∂αi

∂v

∂αj
+
∂H

∂αi

∂H

∂αj
v +

∂2v

∂αi∂αj
+

∂v

∂αi

∂H

∂αj

)

exp(H)
]

(x, α).

For α = 0, we know thatQ(x, 0) = P (so that v(x, 0) = 1 = (1, . . . , 1)t) and [∂Q/∂αi](x, 0) =
(Pk,k′E[fi(x, k, U)])k,k′∈E . Hence, for every k ∈ E, E[fi(x, k, U)]+

∑

k′∈E Pk,k′[∂vk′/∂αi](x, 0) =
[∂H/∂αi](x, 0) + [∂vk/∂αi](x, 0). Integrating with respect to the invariant measure µ, we
deduce that [∂H/∂αi](x, 0) =

∑

k∈E µ(k)E[fi(x, k, U)] = f̄i(x) . Finally,

∑

k′∈E

(Id − P )k,k′
∂vk′

∂αi
(x, 0) = E[fi(x, k, U)] − f̄i(x). (7.8)

Applying the same method for the second order derivatives, we obtain for every k ∈ E:

E[(fifj)(x, k, U)] +
∑

k′∈E

Pk,k′
∂2vk′

∂αi∂αj
(x, 0)

+
∑

k′∈E

[

E[fi(x, k, U)]Pk,k′ − f̄i(x)δk,k′
]∂vk′

∂αj
(x, 0)

+
∑

k′∈E

[

E[fj(x, k, U)]Pk,k′ − f̄j(x)δk,k′
]∂vk′

∂αi
(x, 0)

=
∂2H

∂αi∂αj
(x, 0) + [f̄if̄j ](x) +

∂2vk
∂αi∂αj

(x, 0).

(7.9)

By (7.8), we have

∑

k,k′∈E

µ(k)
[

E[fi(x, k, U)]Pk,k′ − f̄i(x)δk,k′
]∂vk′

∂αj
(x, 0)

=
∑

k,k′∈E

µ(k)
[

E[fi(x, k, U)] − f̄i(x)
]

Pk,k′
∂vk′

∂αj
(x, 0)

=
∑

k,k′,k′′∈E

µ(k)(Id − P )k,k′′
∂vk′′

∂αi
(x, 0)Pk,k′

∂vk′

∂αj
(x, 0)

= 〈(Id − P )
∂v

∂αi
(x, 0), P

∂v

∂αj
(x, 0)〉µ,
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where 〈·, ·〉µ denotes the scalar product on L2(µ) and Id the identity matrix on E. We
now integrate (7.9) with respect to the invariant measure, we deduce

∂2H

∂αi∂αj
(x, 0) =

∑

k∈E

µ(k)E[(fifj)(x, k, U)] − [f̄if̄j ](x)

+ 〈(Id − P )
∂v

∂αi
(x, 0), P

∂v

∂αj
(x, 0)〉µ

+ 〈(Id − P )
∂v

∂αj
(x, 0), P

∂v

∂αi
(x, 0)〉µ.

(7.10)

Using (7.8), we deduce

∑

k∈E

µ(k)E[fi(x, k, U)]E[fj(x, k, U)] − [f̄if̄j ](x)

= 〈(Id − P )
∂v

∂αi
(x, 0), (Id − P )

∂v

∂αj
(x, 0)〉µ.

(7.11)

Plugging (7.11) into (7.10), we obtain

∂2H

∂αi∂αj
(x, 0) =

∑

k∈E

µ(k)E[(fifj)(x, k, U)] −
∑

k∈E

µ(k)E[fi(x, k, U)]E[fj(x, k, U)]

+ 〈(Id − P )
∂v

∂αi
(x, 0), (Id − P )

∂v

∂αj
(x, 0)〉µ

+ 〈(Id − P )
∂v

∂αi
(x, 0), P

∂v

∂αj
(x, 0)〉µ + 〈(Id − P )

∂v

∂αj
(x, 0), P

∂v

∂αi
(x, 0)〉µ

For all (λi)1≤i≤d ∈ R
d and k ∈ E, we set uλ(k) =

∑d
i=1 λi[∂vk/∂αi](x, 0). Then,

∇2
α,αH(λ) = Ef(λ) + 〈(Id − P )uλ, (I − P )uλ〉µ + 2〈(Id − P )uλ, Puλ〉µ.

= Ef(λ) + 〈uλ, uλ〉µ − 〈Puλ, Puλ〉µ

= Ef(λ) +

∫

E

dµ(k)Ek
[

(uλ(ξ1))
2
]

−

∫

E

dµ(k)
[

E
kuλ(ξ1)

]2
≥ Ef(λ).

This completes the proof.
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