7 research outputs found

    Professionals Who Care: A Nonprofit Design for Inclusivity of Caregivers in the Workplace

    Get PDF
    Informal caregivers provide essential care to the disabled, ill, aging, or injured, services that are valued over $470 billion annually in the United States. Research has shown that nearly half of these caregivers had no choice in taking on their role, and that this population experiences significant financial, physical, and mental health struggles. 32.3 million of these caregivers must balance both care and job responsibilities, and these employed caregivers face widespread discrimination in the workplace. The bias against care providers is based on historic expectations of what makes an ideal worker: traditional hours, uninterrupted, and in person. These cultural standards have limited relevancy in today’s society with high rates of caregiving in the home, advanced technology, and the proven success of remote and flexible work during the covid-19 pandemic. While the workplace has made strides in recognizing the benefits and becoming more thoughtful of diversity-equity-inclusion issues and employment well-being, employed caregivers often encounter experiences as an invisible and marginalized class. This report will explore the struggles of employed caregivers, describe workplace advocacy gaps, and detail the design, benefits, and incorporation for Professionals Who Care, a nonprofit dedicated to inclusivity for employed caregivers in the workplace

    Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification

    Get PDF
    Familial idiopathic basal ganglia calcification (IBGC) or Fahr's disease is a rare neurodegenerative disorder characterized by calcium deposits in the basal ganglia and other brain regions, which is associated with neuropsychiatric and motor symptoms. Familial IBGC is genetically heterogeneous and typically transmitted in an autosomal dominant fashion. We performed a mutational analysis of SLC20A2, the first gene found to cause IBGC, to assess its genetic contribution to familial IBGC. We recruited 218 subjects from 29 IBGC-affected families of varied ancestry and collected medical history, neurological exam, and head CT scans to characterize each patient's disease status. We screened our patient cohort for mutations in SLC20A2. Twelve novel (nonsense, deletions, missense, and splice site) potentially pathogenic variants, one synonymous variant, and one previously reported mutation were identified in 13 families. Variants predicted to be deleterious cosegregated with disease in five families. Three families showed nonsegregation with clinical disease of such variants, but retrospective review of clinical and neuroimaging data strongly suggested previous misclassification. Overall, mutations in SLC20A2 account for as many as 41 % of our familial IBGC cases. Our screen in a large series expands the catalog of SLC20A2 mutations identified to date and demonstrates that mutations in SLC20A2 are a major cause of familial IBGC. Non-perfect segregation patterns of predicted deleterious variants highlight the challenges of phenotypic assessment in this condition with highly variable clinical presentation

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Professionals Who Care: A Nonprofit Design for Inclusivity of Caregivers in the Workplace

    No full text
    Informal caregivers provide essential care to the disabled, ill, aging, or injured, services that are valued over $470 billion annually in the United States. Research has shown that nearly half of these caregivers had no choice in taking on their role, and that this population experiences significant financial, physical, and mental health struggles. 32.3 million of these caregivers must balance both care and job responsibilities, and these employed caregivers face widespread discrimination in the workplace. The bias against care providers is based on historic expectations of what makes an ideal worker: traditional hours, uninterrupted, and in person. These cultural standards have limited relevancy in today’s society with high rates of caregiving in the home, advanced technology, and the proven success of remote and flexible work during the covid-19 pandemic. While the workplace has made strides in recognizing the benefits and becoming more thoughtful of diversity-equity-inclusion issues and employment well-being, employed caregivers often encounter experiences as an invisible and marginalized class. This report will explore the struggles of employed caregivers, describe workplace advocacy gaps, and detail the design, benefits, and incorporation for Professionals Who Care, a nonprofit dedicated to inclusivity for employed caregivers in the workplace

    Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification

    No full text
    Familial idiopathic basal ganglia calcification (IBGC) or Fahr’s disease is a rare neurodegenerative disorder characterized by calcium deposits in the basal ganglia and other brain regions, which is associated with neuropsychiatric and motor symptoms. Familial IBGC is genetically heterogeneous and typically transmitted in an autosomal dominant fashion. We performed a mutational analysis of SLC20A2, the first gene found to cause IBGC, to assess its genetic contribution to familial IBGC. We recruited 218 subjects from 29 IBGC-affected families of varied ancestry and collected medical history, neurological exam, and head CT scans to characterize each patient’s disease status. We screened our patient cohort for mutations in SLC20A2. Twelve novel (nonsense, deletions, missense, and splice site) potentially pathogenic variants, one synonymous variant, and one previously reported mutation were identified in 13 families. Variants predicted to be deleterious cosegregated with disease in five families. Three families showed nonsegregation with clinical disease of such variants, but retrospective review of clinical and neuroimaging data strongly suggested previous misclassification. Overall, mutations in SLC20A2 account for as many as 41 % of our familial IBGC cases. Our screen in a large series expands the catalog of SLC20A2 mutations identified to date and demonstrates that mutations in SLC20A2 are a major cause of familial IBGC. Non-perfect segregation patterns of predicted deleterious variants highlight the challenges of phenotypic assessment in this condition with highly variable clinical presentation

    Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification

    No full text
    Familial idiopathic basal ganglia calcification (IBGC) or Fahr's disease is a rare neurodegenerative disorder characterized by calcium deposits in the basal ganglia and other brain regions, which is associated with neuropsychiatric and motor symptoms. Familial IBGC is genetically heterogeneous and typically transmitted in an autosomal dominant fashion. We performed a mutational analysis of SLC20A2, the first gene found to cause IBGC, to assess its genetic contribution to familial IBGC. We recruited 218 subjects from 29 IBGC-affected families of varied ancestry and collected medical history, neurological exam, and head CT scans to characterize each patient's disease status. We screened our patient cohort for mutations in SLC20A2. Twelve novel (nonsense, deletions, missense, and splice site) potentially pathogenic variants, one synonymous variant, and one previously reported mutation were identified in 13 families. Variants predicted to be deleterious cosegregated with disease in five families. Three families showed nonsegregation with clinical disease of such variants, but retrospective review of clinical and neuroimaging data strongly suggested previous misclassification. Overall, mutations in SLC20A2 account for as many as 41 % of our familial IBGC cases. Our screen in a large series expands the catalog of SLC20A2 mutations identified to date and demonstrates that mutations in SLC20A2 are a major cause of familial IBGC. Non-perfect segregation patterns of predicted deleterious variants highlight the challenges of phenotypic assessment in this condition with highly variable clinical presentation
    corecore