274 research outputs found

    A Nonlinear Mechanism for Decadal El Niño Amplitude Changes

    Get PDF
    Based on the analysis of a low-order tropical atmosphere-ocean model we propose a nonlinear mechanism explaining several features of the observed El Niño-Southern Oscillation (ENSO) phenomenon: ENSO irregularity, ENSO Amplitude Modulations and decadal tropical climate variability. The mechanism suggested here is based on the idea of homoclinic/heteroclinic orbits, an inherently nonlinear concept. It turns out that this mechanism operates even in the presence of wind noise and is consistent with results from intermediate ENSO model simulations

    Early Pliocene increase in thermohaline overturning : a precondition for the development of the modern equatorial Pacific cold tongue

    Get PDF
    Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 25 (2010): PA2202, doi:10.1029/2008PA001645.Unraveling the processes responsible for Earth's climate transition from an “El Niño–like state” during the warm early Pliocene into a modern-like “La Niña–dominated state” currently challenges the scientific community. Recently, the Pliocene climate switch has been linked to oceanic thermocline shoaling at ∼3 million years ago along with Earth's final transition into a bipolar icehouse world. Here we present Pliocene proxy data and climate model results, which suggest an earlier timing of the Pliocene climate switch and a different chain of forcing mechanisms. We show that the increase in North Atlantic meridional overturning circulation between 4.8 and 4.0 million years ago, initiated by the progressive closure of the Central American Seaway, triggered overall shoaling of the tropical thermocline. This preconditioned the turnaround from a warm eastern equatorial Pacific to the modern equatorial cold tongue state about 1 million years earlier than previously assumed. Since ∼3.6–3.5 million years ago, the intensification of Northern Hemisphere glaciation resulted in a strengthening of the trade winds, thereby amplifying upwelling and biogenic productivity at low latitudes.Funding for this research was provided by the Deutsche Forschungsgemeinschaft (DFG) through projects Ti 240/7, Ti 240/12 (being part of the DFG Research Unit, FOR 451: Impact of Gateways on Ocean Circulation, Climate, and Evolution at Kiel University), and Ti 240/17 and through the DFG Research Center/Excellence Cluster “The Ocean in the Earth System” at the University of Bremen. A. Timmermann is supported by the Japan Agency for Marine-Earth Science and Technology through its sponsorship of the International Pacific Research Center

    A review of predictability studies of the Atlantic sector climate on decadal time-scales

    Get PDF
    This review paper discusses the physical basis and the potential for decadal climate predictability over the Atlantic and its adjacent land areas. Many observational and modeling studies describe pronounced decadal and multidecadal variability in the Atlantic Ocean. However, it still needs to be quantified to which extent the variations in the ocean drive variations in the atmosphere and over land. In particular, although a clear impact of the Tropics on the midlatitudes has been demonstrated, it is unclear if and how the extratropical atmosphere responds to midlatitudinal sea surface temperature anomalies. Although the mechanisms behind the decadal to multidecadal variability in the Atlantic sector are still controversial, there is some consensus that some of the longer-term multidecadal variability is driven by variations in the thermohaline circulation. The variations in the North Atlantic thermohaline circulation appear to be predictable one to two decades ahead, as shown by a number of perfect model predictability experiments. The next few decades will be dominated by these multidecadal variations, although the effects of anthropogenic climate change are likely to introduce trends. Some impact of the variations of the thermohaline circulation on the atmosphere has been demonstrated in some studies so that useful decadal predictions with economic benefit may be possible

    Pacific Decadal Variability and the Subtropical-Tropical Cells

    Get PDF
    We have analyzed the decadal-scale variability in the Tropical Pacific by means of observations and numerical model simulations. The two leading modes of the sea surface temperature (SST) variability in the central western Pacific are a decadal mode with a period of about 10 years and the ENSO mode with a dominant period of about four years. The SST anomaly pattern of the decadal mode is ENSO-like. The decadal mode, however, explains most variance in the western equatorial Pacific and off the equator. A simulation with an ocean general circulation model (OGCM) forced by reanalysis data is used to explore the origin of the decadal mode. It is found that the variability of the shallow subtropical-tropical overturning cells (STCs) is an important factor in driving the decadal mode. This is supported by results from a multi-century integration with a coupled ocean-atmosphere general circulation model (CGCM) that realistically simulates Tropical Pacific decadal variability. Finally, the sensitivity of the STCs to greenhouse warming is discussed by analyzing the results of a scenario integration with the same CGCM

    Complete patient exposure during paediatric brain cancer treatment for photon and proton therapy techniques including imaging procedures

    Get PDF
    BackgroundIn radiotherapy, especially when treating children, minimising exposure of healthy tissue can prevent the development of adverse outcomes, including second cancers. In this study we propose a validated Monte Carlo framework to evaluate the complete patient exposure during paediatric brain cancer treatment.Materials and methodsOrgan doses were calculated for treatment of a diffuse midline glioma (50.4 Gy with 1.8 Gy per fraction) on a 5-year-old anthropomorphic phantom with 3D-conformal radiotherapy, intensity modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT) and intensity modulated pencil beam scanning (PBS) proton therapy. Doses from computed tomography (CT) for planning and on-board imaging for positioning (kV-cone beam CT and X-ray imaging) accounted for the estimate of the exposure of the patient including imaging therapeutic dose. For dose calculations we used validated Monte Carlo-based tools (PRIMO, TOPAS, PENELOPE), while lifetime attributable risk (LAR) was estimated from dose-response relationships for cancer induction, proposed by Schneider et al.ResultsOut-of-field organ dose equivalent data of proton therapy are lower, with doses between 0.6 mSv (testes) and 120 mSv (thyroid), when compared to photon therapy revealing the highest out-of-field doses for IMRT ranging between 43 mSv (testes) and 575 mSv (thyroid). Dose delivered by CT ranged between 0.01 mSv (testes) and 72 mSv (scapula) while a single imaging positioning ranged between 2 μSv (testes) and 1.3 mSv (thyroid) for CBCT and 0.03 μSv (testes) and 48 μSv (scapula) for X-ray. Adding imaging dose from CT and daily CBCT to the therapeutic demonstrated an important contribution of imaging to the overall radiation burden in the course of treatment, which is subsequently used to predict the LAR, for selected organs.ConclusionThe complete patient exposure during paediatric brain cancer treatment was estimated by combining the results from different Monte Carlo-based dosimetry tools, showing that proton therapy allows significant reduction of the out-of-field doses and secondary cancer risk in selected organs

    Sea surface and subsurface circulation dynamics off equatorial Peru during the last ~17 kyr

    Get PDF
    The complex deglacial to Holocene oceanographic development in the Gulf of Guayaquil (Eastern Equatorial Pacific) is reconstructed for sea surface and subsurface ocean levels from (isotope) geochemical proxies based on marine sediment cores. At sea surface, southern sourced Cold Coastal Water and tropical Equatorial Surface Water/Tropical Surface Water are intimately related. In particular since ~10 ka, independent sea surface temperature proxies capturing different seasons emphasize the growing seasonal contrast in the Gulf of Guayaquil, which is in contrast to ocean areas further offshore. Cold Coastal Water became rapidly present in the Gulf of Guayaquil during the austral winter season in line with the strengthening of the Southeast Trades, while coastal upwelling off Peru gradually intensified and expanded northward in response to a seasonally changing atmospheric circulation pattern affecting the core locations intensively since 4 ka BP. Equatorial Surface Water, instead, was displaced and Tropical Surface Water moved northward together with the Equatorial Front. At subsurface, the presence of Equatorial Under Current-sourced Equatorial Subsurface Water was continuously growing, prominently since ~10–8 ka B.P. During Heinrich Stadial 1 and large parts of the Bølling/Allerød, and similarly during short Holocene time intervals at ~5.1–4 ka B.P. and ~1.5–0.5 ka B.P., the admixture of Equatorial Subsurface Water was reduced in response to both short-term weakening of Equatorial Under Current strength from the northwest and emplacement by tropical Equatorial Surface Water, considerably warming the uppermost ocean layers

    Epstein-Barr Virus and p16INK4A Methylation in Squamous Cell Carcinoma and Precancerous Lesions of the Cervix Uteri

    Get PDF
    Methylation of p16 is an important mechanism in cervical carcinogenesis. However, the relationship between cervical squamous cell carcinoma (SCC) and Epstein-Barr virus (EBV) remains controversial. Here, we explored whether EBV infection and/or p16 gene inactivation would play any role in cervical carcinogenesis. Eighty-two specimens included 41 invasive SCCs, 30 cervical intraepithelial neoplasm (CIN; CIN 1, 11 cases, CIN II, 3 cases, CIN III 16 cases) and 11 nonneoplastic cervices. EBV was detected by polymerase chain reaction (PCR) for EBNA-1 and in situ hybridization for EBER-1. The p16 methylation-status and the expression of p16 protein were studied by methylation-specific PCR and immunohistochemistry, respectively. The materials were divided into four groups: 1) nonneoplastic cervices, 2) CIN I, 3) CIN II-III and 4) invasive SCCs. p16 methylation and p16 immunoexpressions increased in CIN and invasive SCCs than nonneoplastic tissue. p16-methylation and p16-immunoreactivities were higher in the EBV-positive group (p=0.009, p<0.001) than in the EBV-negative group. EBV was detected more frequently in CIN and SCCs than nonneoplastic cervices. In conclusion, a correlation between p16 methylation, p16 immunoreactivity and the detection of EBV strongly suggested that the cooperation of EBV and p16 gene may play a synergic effect on cell cycle deregulation

    Phylogenetic Relationships in Pterodroma Petrels Are Obscured by Recent Secondary Contact and Hybridization

    Get PDF
    The classification of petrels (Pterodroma spp.) from Round Island, near Mauritius in the Indian Ocean, has confounded researchers since their discovery in 1948. In this study we investigate the relationships between Round Island petrels and their closest relatives using evidence from mitochondrial DNA sequence data and ectoparasites. Far from providing clear delimitation of species boundaries, our results reveal that hybridization among species on Round Island has led to genetic leakage between populations from different ocean basins. The most common species on the island, Pterodroma arminjoniana, appears to be hybridizing with two rarer species (P. heraldica and P. neglecta), subverting the reproductive isolation of all three and allowing gene flow. P. heraldica and P. neglecta breed sympatrically in the Pacific Ocean, where P. arminjoniana is absent, but no record of hybridization between these two exists and they remain phenotypically distinct. The breakdown of species boundaries in Round Island petrels followed environmental change (deforestation and changes in species composition due to hunting) within their overlapping ranges. Such multi-species interactions have implications not only for conservation, but also for our understanding of the processes of evolutionary diversification and speciation

    Modeling the ENSO impact of orbitally induced mean state climate changes

    Get PDF
    The sensitivity of the El Niño–Southern Oscillation (ENSO) phenomenon to changes in the tropical Pacific mean climate is investigated with a coupled atmosphere-ocean-sea ice general circulation model (AOGCM), the Kiel Climate Model (KCM). Different mean climate states are generated by changing the orbital forcing that causes a redistribution of solar energy, which was a major driver of both the Holocene and the Eemian climates. We find that the ENSO amplitude is positively correlated with both the Equatorial Pacific sea surface temperature (SST) and the equatorial zonal SST contrast. The latter is controlled by the upwelling-induced damping of the SST changes in the Eastern Equatorial Pacific (EEP), and by the vertical ocean dynamical heating and zonal heat transport convergence in the Western Equatorial Pacific. The ENSO amplitude also correlates positively with the seasonal SST amplitude in the EEP and negatively with the strength of the easterly Trades over the Equatorial Pacific. However, the ENSO period is rather stable and stays within 3–4 years. Enhanced ENSO amplitude is simulated during the late-Holocene, in agreement with paleoproxy records. The tight positive correlation (r = 0.89) between the ENSO strength and the Western Pacific Warm Pool (WPWP) SST suggests that the latter may provide an indirect measure of the ENSO amplitude from proxy data that cannot explicitly resolve interannual variability. Key Points: - ENSO amplitude enhances as mean SST & west-east SST gradient rise in tropical Pacific - The broad range frequency peaks at periods of 3-4 years over Holocene and Eemian - The Pacific's warm pool SST is a suitable indicator to monitor ENSO variabilit
    corecore