1,007 research outputs found
Book Reviews
Book Reviews by Charles S. Desmond, Godfrey P. Schmidt, Robert E. Sullivan, Louis C. Kaplan, and Paul C. Bartholomew
On the Importance of Countergradients for the Development of Retinotopy: Insights from a Generalised Gierer Model
During the development of the topographic map from vertebrate retina to superior colliculus (SC), EphA receptors are expressed in a gradient along the nasotemporal retinal axis. Their ligands, ephrin-As, are expressed in a gradient along the rostrocaudal axis of the SC. Countergradients of ephrin-As in the retina and EphAs in the SC are also expressed. Disruption of any of these gradients leads to mapping errors. Gierer's (1981) model, which uses well-matched pairs of gradients and countergradients to establish the mapping, can account for the formation of wild type maps, but not the double maps found in EphA knock-in experiments. I show that these maps can be explained by models, such as Gierer's (1983), which have gradients and no countergradients, together with a powerful compensatory mechanism that helps to distribute connections evenly over the target region. However, this type of model cannot explain mapping errors found when the countergradients are knocked out partially. I examine the relative importance of countergradients as against compensatory mechanisms by generalising Gierer's (1983) model so that the strength of compensation is adjustable. Either matching gradients and countergradients alone or poorly matching gradients and countergradients together with a strong compensatory mechanism are sufficient to establish an ordered mapping. With a weaker compensatory mechanism, gradients without countergradients lead to a poorer map, but the addition of countergradients improves the mapping. This model produces the double maps in simulated EphA knock-in experiments and a map consistent with the Math5 knock-out phenotype. Simulations of a set of phenotypes from the literature substantiate the finding that countergradients and compensation can be traded off against each other to give similar maps. I conclude that a successful model of retinotopy should contain countergradients and some form of compensation mechanism, but not in the strong form put forward by Gierer
TeV physics and the Planck scale
Supersymmetry is one of the best motivated possibilities for new physics at
the TeV scale. However, both concrete string constructions and phenomenological
considerations suggest the possibility that the physics at the TeV scale could
be more complicated than the Minimal Supersymmetric Standard Model (MSSM),
e.g., due to extended gauge symmetries, new vector-like supermultiplets with
non-standard SU(2)xU(1) assignments, and extended Higgs sectors. We briefly
comment on some of these possibilities, and discuss in more detail the class of
extensions of the MSSM involving an additional standard model singlet field.
The latter provides a solution to the problem, and allows significant
modifications of the MSSM in the Higgs and neutralino sectors, with important
consequences for collider physics, cold dark matter, and electroweak
baryogenesis.Comment: 17 pages, 5 figures. To appear in New Journal of Physic
Observation of a New Charmed Strange Meson
Using the CLEO-II detector, we have obtained evidence for a new meson
decaying to . Its mass is
{}~MeV/ and its width is ~MeV/. Although we do not
establish its spin and parity, the new meson is consistent with predictions for
an , , charmed strange state.Comment: 9 pages uuencoded compressed postscript (process with uudecode then
gunzip). hardcopies with figures can be obtained by sending mail to:
[email protected]
Search for Doubly-Charged Higgs Boson Production at HERA
A search for the single production of doubly-charged Higgs bosons H^{\pm \pm}
in ep collisions is presented. The signal is searched for via the Higgs decays
into a high mass pair of same charge leptons, one of them being an electron.
The analysis uses up to 118 pb^{-1} of ep data collected by the H1 experiment
at HERA. No evidence for doubly-charged Higgs production is observed and mass
dependent upper limits are derived on the Yukawa couplings h_{el} of the Higgs
boson to an electron-lepton pair. Assuming that the doubly-charged Higgs only
decays into an electron and a muon via a coupling of electromagnetic strength
h_{e \mu} = \sqrt{4 \pi \alpha_{em}} = 0.3, a lower limit of 141 GeV on the
H^{\pm\pm} mass is obtained at the 95% confidence level. For a doubly-charged
Higgs decaying only into an electron and a tau and a coupling h_{e\tau} = 0.3,
masses below 112 GeV are ruled out.Comment: 15 pages, 3 figures, 1 tabl
Measurement of the Spectroscopy of Orbitally Excited B Mesons at LEP
We measure the masses, decay widths and relative production rate of orbitally
excited B mesons using 1.25 million hadronic Z decays recorded by the L3
detector. B-meson candidates are inclusively reconstructed and combined with
charged pions produced at the primary event vertex. An excess of events above
the expected background in the B\pi mass spectrum in the region 5.6-5.8 GeV is
interpreted as resulting from the decay B_u,d^** -> B^(*)\pi, where B_u,d^**
denotes a mixture of l=1 B-meson states containing a u or a d quark. A fit to
the mass spectrum yields the masses and decay widths of the B_1^* and B_2^*
spin states, as well as the branching fraction for the combination of l=1
states. In addition, evidence is presented for the existence of an excited
B-meson state or mixture of states in the region 5.9-6.0 GeV
Study of DJ meson decays to D+π−, D0π+ and D∗+π− final states in pp collisions
A study of D+π−, D0π+ and D∗+π− final states is performed using pp collision data, corresponding to an integrated luminosity of 1.0 fb−1, collected at a centre-of-mass energy of 7 TeV with the LHCb detector. The D1(2420)0 resonance is observed in the D∗+π− final state and the D∗2(2460) resonance is observed in the D+π−, D0π+ and D∗+π− final states. For both resonances, their properties and spin-parity assignments are obtained. In addition, two natural parity and two unnatural parity resonances are observed in the mass region between 2500 and 2800 MeV. Further structures in the region around 3000 MeV are observed in all the D∗+π−, D+π− and D0π+ final states
Diffractive Dijet Production at sqrt(s)=630 and 1800 GeV at the Fermilab Tevatron
We report a measurement of the diffractive structure function of
the antiproton obtained from a study of dijet events produced in association
with a leading antiproton in collisions at GeV at the
Fermilab Tevatron. The ratio of at GeV to
obtained from a similar measurement at GeV is compared with
expectations from QCD factorization and with theoretical predictions. We also
report a measurement of the (-Pomeron) and ( of parton in
Pomeron) dependence of at GeV. In the region
, GeV and , is
found to be of the form , which obeys
- factorization.Comment: LaTeX, 9 pages, Submitted to Phys. Rev. Letter
- …