512 research outputs found

    Temporal and spatial trends in marine carbon isotopes in the Arctic Ocean and implications for food web studies

    Get PDF
    The Arctic is undergoing unprecedented environmental change. Rapid warming, decline in sea ice extent, increase in riverine input, ocean acidification and changes in primary productivity are creating a crucible for multiple concurrent environmental stressors, with unknown consequences for the entire arctic ecosystem. Here, we synthesised 30 years of data on the stable carbon isotope (δ13 C) signatures in dissolved inorganic carbon (δ13 C-DIC; 1977 to 2014), marine and riverine particulate organic carbon (δ13 C-POC; 1986 to 2013) and tissues of marine mammals in the Arctic. δ13 C values in consumers can change as a result of environmentally driven variation in the δ13 C values at the base of the food web or alteration in the trophic structure, thus providing a method to assess the sensitivity of food webs to environmental change. Our synthesis reveals a spatially heterogeneous and temporally evolving δ13 C baseline, with spatial gradients in the δ13 C-POC values between arctic shelves and arctic basins likely driven by differences in productivity and riverine and coastal influence. We report a decline in δ13 C-DIC values (-0.011 ‰ y-1 ) in the Arctic, reflecting increasing anthropogenic carbon dioxide (CO2 ) in the Arctic Ocean (i.e. Suess effect), which is larger than predicted. The larger decline in δ13 C-POC values and δ13 C in arctic marine mammals reflects the anthropogenic CO2 signal as well as the influence of a changing arctic environment. Combining the influence of changing sea ice conditions and isotopic fractionation by phytoplankton, we explain the decadal decline in δ13 C-POC values in the Arctic Ocean and partially explain the δ13 C values in marine mammals with consideration of time-varying integration of δ13 C values. The response of the arctic ecosystem to ongoing environmental change is stronger than we would predict theoretically, which has tremendous implications for the study of food webs in the rapidly changing Arctic Ocean

    The GEOTRACES Intermediate Data Product 2017

    Get PDF
    The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-s data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES-edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. Gonzalez

    An intermediate-depth source of hydrothermal 3He and dissolved iron in the North Pacific

    Get PDF
    We observed large water column anomalies in helium isotopes and trace metal concentrations above the Loihi Seamount. The 3He/4He of the added helium was 27.3 times the atmospheric ratio, clearly marking its origin to a primitive mantle plume. The dissolved iron to 3He ratio (dFe:3He) exported to surrounding waters was 9.3 ± 0.3 × 106. We observed the Loihi 3He and dFe “signal” at a depth of 1100 m at several stations within ∼100 – 1000 km of Loihi, which exhibited a distal dFe:3He ratio of ∼4 × 106, about half the proximal ratio. These ratios were remarkably similar to those observed over and near the Southern East Pacific Rise (SEPR) despite greatly contrasting geochemical and volcanictectonic origins. In contrast, the proximal and distal dMn:3He ratios were both ∼ 1 × 106, less than half of that observed at the SEPR. Dissolved methane was minimally enriched in waters above Loihi Seamount and was distally absent. Using an idealized regional-scale model we replicated the historically observed regional 3He distribution, requiring a hydrothermal 3He source from Loihi of 10.4 ± 4.2 mola−1, ∼2% of the global abyssal hydrothermal 3He flux. From this we compute a corresponding dFe flux of ∼40 Mmola−1. Global circulation model simulations suggest that the Loihi-influenced waters eventually upwell along the west coast of North America, also extending into the shallow northwest Pacific, making it a possibly important determinant of marine primary production in the subpolar North Pacific

    Dissolved Organic Matter in the Upwelling System off Peru: Imprints of Bacterial Activity and Water Mass Characteristics

    Get PDF
    Microbial degradation of dissolved organic matter (DOM) contributes to the formation and preservation of oxygen minimum zones (OMZs) in the ocean, but information on the spatial distribution and molecular composition of DOM in OMZ regions is scarce. We quantified molecular components of DOM that is, dissolved amino acids (DAA) and dissolved combined carbohydrates (DCCHO), in the upwelling region off Peru. We found the highest concentrations of DCCHO in fully oxygenated surface waters steeply declining at shallow depth. The highest DAA concentrations were observed close to the surface also, but attenuation of DAA concentration over depth was less pronounced. Compositional changes of DCCHO were strongest within more oxygenated waters. Compositional changes of DAA were also evident under suboxic conditions (<5 µmol O2 kg−1) and indicated bacterial peptide degradation. Moreover, specific free amino acids (alanine and threonine) were enhanced within suboxic waters, pointing to a potential production of dissolved organic nitrogen under suboxic conditions. Our results therewith suggest that deoxygenation supports a spatial decoupling of DCCHO and DAA production and degradation dynamics and give new insights to carbon and nitrogen cycling in the OMZ off Peru

    A multi-decade record of high quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)

    Get PDF
    The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) “living data” publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID

    Variability in efficiency of particulate organic carbon export: A model study

    Get PDF
    The flux of organic carbon from the surface ocean to mesopelagic depths is a key component of the global carbon cycle and is ultimately derived from primary production (PP) by phytoplankton. Only a small fraction of organic carbon produced by PP is exported from the upper ocean, referred to as the export efficiency (herein e-ratio). Limited observations of the e-ratio are available and there is thus considerable interest in using remotely-sensed parameters such as sea surface temperature to extrapolate local estimates to global annual export flux. Currently, there are large discrepancies between export estimates derived in this way; one possible explanation is spatial or temporal sampling bias in the observations. Here we examine global patterns in the spatial and seasonal variability in e-ratio and the subsequent effect on export estimates using a high resolution global biogeochemical model. NEMO-MEDUSA represents export as separate slow and fast sinking detrital material whose remineralisation is respectively temperature dependent and a function of ballasting minerals. We find that both temperature and the fraction of export carried by slow sinking particles are factors in determining e-ratio, suggesting that current empirical algorithms for e-ratio that only consider temperature are overly simple. We quantify the temporal lag between PP and export, which is greatest in regions of strong variability in PP where seasonal decoupling can result in large e-ratio variability. Extrapolating global export estimates from instantaneous measurements of e-ratio is strongly affected by seasonal variability, and can result in errors in estimated export of up to ±60%

    Growth and cycles of the Italian economy since 1861: the new evidence

    Get PDF
    Based on a newly-available large set of historical national accounts, the paper revisits the main features of economic growth and cycles in Italy for the post-Unification period 1861-2011. Alongside the structural changes in growth dynamics, the main sources of output and productivity growth are identified. As regards the analysis of the underlying cyclical component, a business cycle chronology is first established and then both the specific patterns of individual cycles and the co-movements of output with key macroeconomic variables are investigated. In the 150 years since its political Unification, Italy's economic growth was mainly propelled by consumption and investments, whereas on the supply side the industry and services sectors were by far the main contributors, also because of the positive effect of labour reallocation to nonfarm activities. Over the same period, Italy experienced approximately 20 business cycles of varying duration and amplitude. Output fluctuations were dominated by the short-term variability of agricultural production before World War II and by fluctuations of the industry sector thereafter. The cyclical behaviour exhibited by aggregate demand components conforms quite well to that evidenced in the standard international business cycle literature, although some exceptions arise in the pre-World War II years

    The salinity normalization of marine inorganic carbon chemistry data

    Get PDF
    Normalization to a constant salinity (S) is widely used for the adjustment of marine inorganic carbon chemistry data such as total alkalinity (AT) and total dissolved inorganic carbon (CT). This procedure traces back to the earliest studies in marine chemistry, but ignores the influence of riverine input of alkalinity and of dissolution of biogenic carbonates in the ocean. We tested different adjustment possibilities for AT and conclude that in most parts of the surface ocean the normalization concept does not reflect relationships which represent reality. In this paper, we propose a salinity adjustment based on a constant and region-specific term for S = 0, which expresses river run off, upwelling from below the lysocline, calcification, and lateral sea surface water exchange. One application of the normalization concept is its extension to AT and also CT predictions and implementation in models. We give a brief discussion on the usage of such extensions
    corecore