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tal stressors, with unknown consequences for the entire arctic ecosystem. Here, we

solved inorganic carbon (8*3C-DIC; 1977-2014), marine and riverine particulate or-
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513C values in consumers can change as a result of environmentally driven variation in

providing a method to assess the sensitivity of food webs to environmental change.
Our synthesis reveals a spatially heterogeneous and temporally evolving 513C base-
line, with spatial gradients in the §'3C-POC values between arctic shelves and arctic
basins likely driven by differences in productivity and riverine and coastal influence.
We report a decline in §'3C-DIC values (-0.011%o per year) in the Arctic, reflecting
increasing anthropogenic carbon dioxide (CO,) in the Arctic Ocean (i.e. Suess effect),
which is larger than predicted. The larger decline in 83C-POC values and §'°C in
arctic marine mammals reflects the anthropogenic CO, signal as well as the influence
of a changing arctic environment. Combining the influence of changing sea ice condi-
tions and isotopic fractionation by phytoplankton, we explain the decadal decline in
513C-POC values in the Arctic Ocean and partially explain the §'°C values in marine
mammals with consideration of time-varying integration of 5'3C values. The response
of the arctic ecosystem to ongoing environmental change is stronger than we would
predict theoretically, which has tremendous implications for the study of food webs

in the rapidly changing Arctic Ocean.
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1 | INTRODUCTION

The Arctic is changing rapidly (IPCC, 2013), warming twice as fast as
the global average (Carmack et al., 2015; Hoegh-Guldberg & Bruno,
2010) and causing sea ice to decline in both extent and thickness
(Kwok, 2018; Lind, Ingvaldsen, & Furevik, 2018). Sea ice underpins
the entire arctic ecosystem and the decline in this seasonal habitat is
affecting the entire food web. Primary production has increased by
30% from 1998 to 2012 owing to an increase in light under reduced
ice conditions (Arrigo & van Dijken, 2015). Arctic predators, such as
seals and polar bears, that rely on sea ice for foraging, moulting and
breeding are also adversely affected by the loss of sea ice (Laidre
etal., 2008). Other climate-induced changes are occurring in tandem
and include acidification (Yamamoto, Kawamiya, Ishida, Yamanaka,
& Watanabe, 2012), shifts in wind patterns and enhanced wind field
in the Western Arctic (Overland & Wang, 2010), increased coastal
erosion, river flow and melting of permafrost and glaciers (Haine
et al., 2015; Jones et al., 2009; Mars & Houseknecht, 2007). These
multiple concurrent stressors have far-reaching implications for the
arctic marine ecosystem at multiple trophic levels, and there is an
urgent need to understand the ecosystem response in this unique
polar habitat.

The ratio of stable carbon isotopes, **C and 2C, expressed as
§13C (%o), provides a powerful tool for studying food webs. The
§'3C values of particulate organic carbon (POC), consisting of fresh
phytoplankton, microzooplankton, bacteria and marine and terres-
trial detritus, (Fry & Sherr, 1989; Lobbes, Fitznar, & Kattner, 2000;
Michener & Kaufman, 2007; Wassmann et al., 2004), represent the
base of the food web or ‘baseline’. The §!°C values of POC (5'3C-
POC) are generally transferred with a 3C enrichment of 1%0-2%o
between each trophic level, creating an inextricable link between
the base of the food web and consumers (Fry, Anderson, Entzeroth,
Bird, & Parker, 1984). Spatial trends in 513C-POC values controlled by
environmental factors have been used to decipher the foraging and
migratory patterns of consumers on a regional scale (Hoffman, 2016;
Iken, Bluhm, & Dunton, 2010; Polito et al., 2017; Wassenaar, 2019)
and more recently on a global scale in the construction of global
‘isoscapes’ (Bird et al., 2018; Bowen & West, 2008; Firmin, 2016;
Graham, Koch, Newsome, McMahon, & Aurioles, 2010; McMahon,
Hamady, & Thorrold, 2013b). However, spatial and temporal trends
in the 8*3C values of high trophic levels may also reflect changes in
food web structure such as loss or addition of species, consumer's
diet or a combination of factors. To disentangle the drivers of spatial
and temporal trends in the 5'3C values of consumers in the Arctic, it
is crucial to establish spatial and temporal variations in 513C values
at the base of the food web, allowing the sensitivity of marine arctic
consumers to environmental change to be quantified.

It is challenging to isolate phytoplankton-POC for analysis and
so the nominal definition of §'°C-POC values typically assumes
that the bulk of POC is derived from phytoplankton only, although
§'3C-POC values can be influenced by other factors such as bac-
terial activity and detritus (Michener & Kaufman, 2007). While the
detrital fraction of POC may be degraded by bacteria, potentially
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altering the §'°C values of that fraction, we assume that photosyn-
thetic phytoplankton are responsible for transforming the bulk of
5'3C-POC values in time and space. 513C value of phytoplankton,
which underpins the §'3C-POC values, is controlled by fractionation
during photosynthesis. This equates to the difference between the
513C values of the carbon source, either dissolved inorganic carbon
(DIC) or carbon dioxide (CO,), and the §13C-POC values (Cassar,
Laws, Bidigare, & Popp, 2004; Young, Bruggeman, Rickaby, Erez,
& Conte, 2013). Factors such as phytoplankton growth rate, avail-
ability or concentration of carbon, light and nutrient availability
affect isotopic fractionation and the 83C-POC values (Burkhardt,
Riebesell, & Zondervan, 1999; Keeley & Sandquist, 1992). As such,
environmental conditions can create distinct patterns in these val-
ues. 3'3C-POC values become enriched in *3C in an environment
where replenishment of the CO,, pool is slow or restricted, for exam-
ple, during periods of rapid phytoplankton growth (Rau, Takahashi,
Des Marais, Repeta, & Martin, 1992) or in sea ice associated with
sympagic primary production (Budge et al., 2008; Hobson et al.,
2002; Sgreide et al., 2013; Wang, Budge, Gradinger, lken, & Wooller,
2014). Conversely, an increase in CO, concentration will lead to a
carbon pool depleted in 13¢C (Rau et al., 1992) creating a 13C—deplete
POC pool. Terrestrially derived POC delivered via rivers and coastal
erosion also tends to be depleted in 3C relative to marine-derived
POC (Boutton, 1991; Keeley & Sandquist, 1992). While global iso-
scapes capture the large-scale spatial trends in 8*3C values related
to oceanographic provinces (shelf vs. open ocean) and latitude (Bird
et al,, 2018; Bowen & West, 2008; Graham et al., 2010; McMahon
et al., 2013b), they do not include the Arctic Ocean. We expect the
513C values of POC in the Arctic to be influenced by the strong re-
gional trends in sea ice, productivity and terrestrial influence includ-
ing riverine input and coastal erosion, all of which vary along the
water mass circulation pathways from the inflow shelves, which re-
ceive water from the Atlantic and Pacific oceans, to the arctic basins
and interior shelves (Sakshaug, 2004; Tremblay & Gagnon, 2009;
Varela, Crawford, Wrohan, Wyatt, & Carmack, 2013).

Imprinted on the regional trends is a temporal trend in st
values worldwide. Enhanced atmospheric CO, since the industrial
period (Tagliabue & Bopp, 2008) is causing an increase in oceanic
CO, (Sabine et al., 2004) and a decline in the §'*C values of DIC
(5'3C-DIC), known as the Suess effect, as a result of 13C-depleted an-
thropogenic CO, (Quay, Sonnerup, Westby, Stutsman, & McNichol,
2003). §'3C-DIC values in the Arctic Ocean are predicted to change
at a rate of -0.006%o. to -0.008%. per year, compared to the global
average of -0.017%o per year (Tagliabue & Bopp, 2008). However,
several studies have already shown that decadal trends in the (e
values of marine mammals in the Arctic (Misarti, Finney, Maschner,
& Wooller, 2009; Nelson, Quakenbush, Mahoney, Taras, & Wooller,
2018; Newsome et al., 2007; Schell, 2001) are larger than the Suess
effect alone, implying that other factors are altering their 8*3C signa-
tures on decadal timescales.

The main objective of this study was to quantify how regional dif-
ferences and temporal trends in the arctic environment have altered
the §*3C values in DIC and POC, representing the base of the food web
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or ‘baseline’. We compared these trends at the base of the food web
to trends in §'°C values in arctic marine mammals to investigate how
environmental change (e.g. Suess effect, loss of sea ice) may alter §'°C
values in the entire food web. We synthesized published data from
1977 to 2014 on 8*3C values of DIC and dissolved CO,, and 5*3C-POC
values in the surface ocean (POC,,,.) and in sea ice (POC,_.) across
). We

quantified regional differences in the §'°C values in POC and discuss

‘water
the entire Arctic Ocean, alongside data from arctic rivers (POC

riv
the underlying environmental drivers of the observed spatial heteroge-
neity. We then quantified the decadal trends in §'3C values of DIC and
CO,, and §'3C values of POC in the Arctic Ocean, comparing the rate
of change to the Suess effect and observed trends in tissues of arctic

marine mammals from the post-industrial period.

2 | MATERIALS AND METHODS

2.1 | Data collation

Data on bulk §'3C-POC, .., §*C-POC, . and 8'3C-POC,, values,

focusing on suspended particulate organic matter above the ther-

water’

mocline, were collated from tables and figures in 37 original manu-
scripts and two open access databases for both marine (PANGAEA,;
http://www.pangaea.de) and riverine (articGRO; https://arcticgrea
trivers.org/) environments, in Arctic and sub-Arctic regions, as de-
fined by the Képpen-Geiger climate classification (Kottek, Grieser,
Beck, Rudolf, & Rubel, 2006). The database included 354 data points
for marine 8'°C-POC, .. values (Brown et al., 2014; Connelly,
McClelland, Crump, Kellogg, & Dunton, 2015; Forest et al., 2010;
Griffith et al., 2012; Guo, Tanaka, Wang, Tanaka, & Murata, 2004,
Hallanger et al., 2011; Hobson, Ambrose, & Renaud, 1995; Hobson
et al,, 2002; lken et al., 2010; lken, Bluhm, & Gradinger, 2005;
Ivanov, Lein, Zakharova, & Savvichev, 2012; Kohlbach et al., 2016;
Kulinski, Kedra, Legezynska, Gluchowska, & Zaborska, 2014; Kuzyk,
Macdonald, Tremblay, & Stern, 2010; Lin et al., 2014; Lovvorn et al.,
2005; O'Brien, Macdonald, Melling, & Iseki, 2006; Parsons et al.,
1989; Roy et al., 2015; Sara et al., 2007; Schubert & Calvert, 2001;
Smith, Henrichs, & Rho, 2002; Sgreide et al., 2008; Sgreide, Hop,
Carroll, Falk-Petersen, & Hegseth, 2006; Tamelander, Reigstad, Hop,
& Ratkova, 2009; Tamelander et al., 2006; Tremblay, Michel, Hobson,
Gosselin, & Price, 2006; Zhang et al., 2012), 69 data points for §'3C-
POC,, values (Forest et al., 2010; Hobson et al., 1995; 2002; Iken
et al., 2005; Kohlbach et al., 2016; Lovvorn et al., 2005; Roy et
al.,, 2015; Schubert & Calvert, 2001; Sgreide et al., 2006, 2008;
Tamelander et al., 2006; Tremblay et al., 2006) and 383 data points
for riverine §'*C-POC . values (Goni, Yunker, Macdonald, & Eglinton,
2000; Holmes, McClelland, Tank, Spencer, & Shiklomanov, 2018;
Kuzyk et al., 2010; Lobbes et al., 2000). Data were available over
different temporal scales: marine £‘313C-POCWater values from 1986
to 2013, 5'3C-POC, _ from 1993 to 2012 and riverine §**C-POC,,,
values from 1987 to 2016.

To relate the temporal trend in §°C-POC
predicted decline of 5'%C-DIC and 613C-CO2 values, a compilation

water Values to the

of data on 8'3C-DIC values was extracted from three publications

(Bauch, Polyak, & Ortiz, 2015; Schmittner et al., 2013; Young
et al., 2013) and two databases (Becker et al., 2016; Key et al., 2015).
83C-CO, values were determined from the §*C-DIC values and
absolute temperature following the Equation (1) (Rau, Riebesell, &
Wolf-Gladrow, 1996). §'°C-DIC and 613C-CO2 values included 1,333
data points covering 1977-2014.

813C- CO, =5'°C- DIC+23.644-9,701.5/T, 1)

where T is the temperature in Kelvin.

To determine if the temporal trend in §*3C-POC values was re-
flected in higher trophic levels within the Arctic Ocean, 8'°C data
were collated from arctic marine mammals covering years follow-
ing the industrial period (post 1950). We collated §'3C data from
teeth of ringed seals (Pusa hispida) from 1986 to 2006 from East
Greenland (Aubail, Dietz, Rigét, Simon-Bouhet, & Caurant, 2010)
and northern fur seals (Callorhinus ursinus) from 1950 to 2000
from the Bering Sea and Gulf of Alaska (Newsome et al., 2007).
Additionally, §'3C data were collated from teeth of Beluga whales
(Delphinapterus leucas) from 1963 to 2008 from the Hudson
Bay and from 1976 to 2001 from the Baffin Bay (Matthews &

Kolyma River
Indigirka River
/) Yana River

. Lena River

. Olenek River
_ Yenisey River
N
Ob River

Vakina River

Mezen River
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w = Pacific Water Inflow
= Atlantic Water Inflow

FIGURE 1 Mapindicating the locations of the arctic regions
considered in this study. Circulation pathways are highlighted

and modified from Carmack and Wassmann (2006). The yellow
arrows represent the intermediate Pacific water and the red arrows
represent the Atlantic water. White arrows indicate the mouths of
the arctic rivers. The black circles point to the approximate location
of the North Water Polynia in the Northern Baffin bay, North-

East Water Polynia in Northeast Greenland and Svalbard marine
coastal area. Chu., Churchill River; Gr.Wh., Great Whale River;
Hay., Hayes River; Inn., Innuksuac River; Li.Wh., Little Whale River;
Nas., Nastapoca River; Nel., Nelson River; Win., Winisk River;
Bathymetry and coast lines were from the software Ocean Data
View (Schlitzer, 2016)
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Ferguson, 2014), and baleen plates of bowhead whales (Balaena
mysticetus) from 1950 to 1998 from the Bering and Chukchi Seas
(Schell, 2001).

2.2 | Data treatment

st3c-pocC.

ice’

We analysed the 8*3C-POC 513C-DIC and §'3C-
CO, values in 17 marine arctic regions (Figure 1; Table 1). In ad-
dition, the 8'3C-POC
into two large riverine regions: the Siberian rivers and the North

water’

water Values from arctic rivers were grouped
American rivers (Figure 1; Table 1). The regions were defined based
on their location, and physical and biological characteristics. Most

of the data were collected in summer and §3C-POC did not vary

‘water
seasonally (Appendix S1). In order to achieve the best spatial cover-
age, data from all seasons and years were combined for the spa-
tial comparison. Regional means were calculated for 613C-POCW3ter,
8'c-PoC,,, 8'°C-POC,,,, §'°C-DIC and §'3C-CO, values (Table 1).

The decadal variation of regional marine §*C-POC values

water
in arctic regions was assessed where data were available for at least
three different years covering a period of at least 5 years. This in-
cluded the following regions: arctic basins, Beaufort Sea, Chukchi Sea
and Bering Sea. Svalbard and the Barents Sea, which had similar *3C-
POC,,., values and §'°C-POC, . values (Table S2: ANOVA3 and 4),
were combined into the ‘European Arctic’ to achieve the best temporal
coverage. The mean decadal trend (all regions combined) was calcu-
lated for 5'3C-POC, .., 8*°C-POC, ., 8**C-DIC and §'*C-CO, values.

‘water’ ice’?

2.3 | Statistical analyses

Quantile-quantile plots of the residuals were plotted to check how
closely the data follow a normal distribution (Becker, Chambers, &
Wilks, 1988). The data were normally distributed, and therefore,
we used a one-way ANOVA (a = 0.005; Zuur, leno, & Smith, 2007)
followed by post hoc Tukey pairwise comparison tests in R (R Core
Team, 2018) to spatially compare: (a) the §**C-POC data be-
tween arctic shelves and arctic basins (ANOVA1), between arctic

‘water

shelves and arctic rivers (ANOVA2) and between all arctic shelves
(ANOVAZ); and (b) the 613C—POCice values between all marine arctic
regions where data were available (ANOVA4). We used a two-way
ANOVA followed by post hoc Tukey pairwise comparison test to
compare the §'°C-POC,, values with §'3C-POC
‘origin’) for regions (factor ‘region’) where both data sets were avail-

water Values (factor
able (ANOVAS). Arctic regions with less than five data points were
excluded from statistical analyses. Relevant p-values of the post hoc
Tukey pairwise comparison tests following ANOVA1 to 5 are shown
in Table S2.

We applied linear models in R (R Core Team, 2018) to quantita-
tively assess the latitudinal gradient in §**C-DIC, $**C-CO, and §'*C-
POC values, and the temporal trends in §'3C values of marine
POC POC

The significance and robustness of the linear models were assessed

‘water
DIC, dissolved CO, and arctic marine mammals.

‘water’ ice’
based on the p-values of the slopes and intercepts, the R?, the

F-values and df (Table S3; Zuur et al., 2007).

3 | RESULTS

3.1 | Spatial trends in the §1°C of the baseline

The Atlantic and Pacific waters entering the Arctic via the South
Iceland and Norwegian Sea, and Gulf of Alaska and Bering Sea, re-
spectively (Figure 1; Table 1), had similar '°C-CO, values and were
depleted by up to 2% relative to the 613C-CO2 values in the arctic
basins (Table 1). We observed a significant depletion in 613C—CO2
and §"3C-POC, ..,
DIC did not vary with latitude (Figure 2a).

We analysed the §'°*C-POC,,.,, '°C-POC,, and §'*C-CO, val-
ues in 17 marine arctic regions (Figure 1; Table 1). §!°C values of
POC,
POC, ..., from arctic shelves was significantly enriched in 3¢ com-
pared to POC, ... from arctic basins and POC,, (Figure 3a; Table S2:
ANOVA1 and ANOVA2). The §'3C-POC
pleted in arctic shelves (Beaufort Sea, Svalbard fjords, Canadian ar-

values with increasing latitude (Figure 2). §'3c-

‘water’

water Varied significantly between arctic regions (Figure 3a).

water Values were 13C de-
chipelago and the Hudson Bay) influenced by fresh water (Table 1;
Figure 1) relative to the inflow (Chukchi Sea and Barents Sea) shelves
and the North Water Polynya (Figure 3a; Table S2: ANOVAS3).

613C—POCice values followed the same regional trend as §'%c-
POC,,., values, with §'3C-POC,, values enriched in **C in the
inflow and outflow shelves (Barents Sea, North Water Polynya)
compared to the interior shelf Beaufort Sea and the arctic basins
(Figure 3b; Table S2: ANOVA4).

3.2 | Comparison between §'3C of
POC,__ and POC

'water

Generally, §'3C values of POC,, were significantly **C-enriched
compared to those of POC, ... (p < .005; Table S2: ANOVAS), with
613C—POCWater being enriched by 4.4%. in the Barents Sea, by 4.2%o
in the North Water Polynya and by 7.0%o. in the Canadian archipelago
(Table 1). There were no significant differences between POC, . and
POC, i, in the Svalbard region, the arctic basins and the Beaufort
Sea (Table S2: ANOVAS). §'3C-POC,  values were highly variable in
most of the arctic regions (Figure 3b).

3.3 | Temporal trends in the §1°C of the baseline and
Arctic marine mammals

Inallarctic regions combined, §**C-DIC (1977-2014), §**C-CO, (1977-
2014) and 813C-POCWater (1986-2013) values became significantly
13¢C depleted by 0.011 + 0.001, 0.011 + 0.002 and 0.149 + 0.020%o
per year respectively (Figure 4a; Table 2). The temporal trends in
613C-POCWater values were statistically significant in the Beaufort
Sea (-0.117 + 0.033%o per year; 1987-2013) and in the arctic basins
(-0.256 + 0.057%o per year; 1997-2012) and not statistically signifi-
cant in the European Arctic, Bering Sea and Chukchi Sea (Figure 4b;
Table 2; Table S3). The temporal trend in 813C—POCice values was not
significant (Figure 4d; Table 2; Table S3). The §13C values in the teeth
of northern fur seals, ringed seals and beluga whales, and in baleen
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FIGURE 2 Stable carbon isotope
values (83C, in %o) of (a) marine dissolved
inorganic carbon (DIC; n = 1,333) and
marine dissolved CO, (n = 1,333) and (b)
marine POC, ... (n = 354) in the surface
waters with latitude; each dot is a single
data point; the solid line represents the
slope of the linear regression; dashed lines
indicate the 95% confidence interval of
the linear regression. The equations and p-
values of the linear regressions are shown
on the figure. Trends are considered
significant when p < .005

FIGURE 3 Regional stable carbon
isotope values (3*°C, in %o) of (a) POC, ...
and POC,, and (b) POC,_; Numbers of
observatlons are shown as number on top
of the boxplots. Results of post hoc Tukey
tests following (a) ANOVA1 to ANOVA3
and (b) ANOVAA4 are expressed as letters
on top of the boxplots. Different letters
indicate significant differences (p < .005)
between regions. The p-values of each
test are shown in Table S2
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FIGURE 4 Decadal trend in 5'3C values of: (a) dissolved
inorganic carbon (DIC), dissolved CO, and POC, ... (b) POC_ .. for
each arctic region, (c) POC, .., and arctic marine mammal tissues
and (d) POC,, for each arctic region. BS, Bering sea; CS, Chukchi
sea; EG, East Greenland; GA, Gulf of Alaska; HB, Hudson bay.
Results of the linear models can be found in Table 2 and Table S3.

Number of observations can be found in Table 2

plates of bowhead whales were significantly depleted in 18¢C with
time (Figure 4c; Table 2). The decline in §*3C values in teeth ranged
from 0.020 £ 0.003%o per year in northern fur seals from the Gulf

of Alaska (1950-2000) to -0.046 + 0.012%. per year in ringed seals
from East Greenland (1986-2006; Table 2). The §°C in the baleen
plates of bowhead whales from the Bering and Chukchi Seas signifi-
cantly decreased by 0.064 + 0.010%o per year (1965-1998; Table 2).
The decline in §'3C values of POC, ., @and marine mammals was
larger than decline in §'3C-DIC and §"3C-CO, values (0.011%o per

year, this study). Details of the linear models are shown in Table S3.

4 | DISCUSSION

4.1 | Ice versus water

The 3C-enrichment in POC, . compared to POC in arctic re-

gions has been observed previously and attributed to carbon limi-

water

tation around ice algae within sea ice (Budge et al., 2008; Hobson
et al., 2002; Sgreide et al., 2006; Wang et al., 2014). The termina-
tion of the spring ice edge bloom can cause *3C at the base of the
food web to be altered when *C-enriched ice algae were added
to 3C-depleted pelagic phytoplankton (Sgreide et al., 2006). The
similarity in the 8'3C-POC, _ and §'3C-POC
gions (see Section 2.2) and the high intra-regional variability of
the 613C-POCice values may be explained by differences in ice po-
rosity, allowing replenishment of DIC from water to ice (Thomas
& Papadimitriou, 2011). $'3C-POC,, values were likely to have
been influenced by light availability and the high bacterial activ-

water values in some re-

ity in sea ice compared to open water (Wang et al., 2014). Thus,
variation in the sampling month for sea ice might also contribute
to the high variability in §'3C-POC,.. This highlights that caution
is required when using bulk §'3C values of POC,__ and POC,,., to
distinguish between open water versus ice-dependent food webs
in the Arctic (Sareide et al., 2006). The challenge of disentangling
the contribution of carbon derived from sympagic production to
the food web has been successfully resolved by using compound-
specific stable isotope analyses (e.g. 5'°C values of fatty acids;
Graham, Oxtoby, Wang, Budge, & Wooller, 2014; Oxtoby, Budge,
Iken, Brien, & Wooller, 2016; Oxtoby et al., 2017; Wang et al.,
2015).

4.2 | Spatial trends

Spatial trends in the §'°C values of POC
implying that they were influenced by the same environmental driv-

water aNd POC, _ were similar,
ers within specific regions of the Arctic Ocean.

Low temperature, high wind speed and high productiv-
ity enhance the atmospheric CO, uptake by the Arctic Ocean
(Takahashi et al., 2002), driving strong latitudinal gradients
in concentration and §'3C values of oceanic CO, with '3C-CO,
being more depleted in the Arctic Ocean (=-10%., Young
et al., 2013; -10.2 + 0.5%., this study) relative to the tropics (=-7
%o, Young et al., 2013). In the marine environment, more than
90% of DIC is composed of bicarbonate ions (HCO;; Boutton,
1991). Fractionation between HCO; and atmospheric CO, in-
creases in cold water (Zhang, Quay, & Wilbur, 1995) leading
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TABLE 2 Slopes = SD and p-values of

Slope + SD p-value  Time period :l:‘sr::/zl;i?)fns .the .decadal !inear m.odels of §°C values
in dissolved inorganic carbon (DIC), ocean
POC, . ter dissolved CO,, POC,.... POC, . and arctic
Beaufort sea -0.117£0.033 <005  1987-2013 71 marine mammal tissues
European Arctic -0.499 £ 0.265 .076 1999-2004 20
Arctic basins -0.256 £ 0.057 <.005 1997-2012 87
Bering sea -0.019 £ 0.046 679 1998-2010 62
Chukchi sea +0.008 + 0.071 .906 2003-2009 36
All data -0.149 £ 0.020 <.005 1987-2013 311
POC, .
All data -0.185 £ 0.106 .084 1993-2012 69
DIC
All data -0.011 £ 0.001 <.005 1977-2014 1,333
CO»
All data -0.011 £ 0.002 <.005 1977- 2014 1,333
Marine mammals
Northern fur seal—Bering -0.020 £ 0.003 <.005 1950-2000 40
sea/Gulf of Alaska
Ringed seal—East Greenland -0.046 +0.012 <.005 1986-2006 36
Beluga whale—Hudson Bay -0.026 £0.003 <.005 1963-2008 42
Beluga whale—Baffin Bay -0.021 £ 0.006 <.005 1976-2001 26
Bowhead whale—Bering sea/ -0.064 +0.007 <.005 1965-1998 34

Chukchi sea

Note: Lines in bold are considered significant (p < .005).
Detailed statistics of the linear models are shown in Table S3.

to *3C enrichment of §'3C-DIC values with increasing latitude
(Tagliabue & Bopp, 2008), as observed in this study (Figure 2a).
613C—POCWater values became *3C-depleted with increasing lat-
itude (Figure 2b, this study; Goericke & Fry, 1994; McMahon
et al., 2013b), reflecting the latitudinal trend in 613C-CO2 values
as well as multiple additional factors, including temperature, phy-
toplankton growth rates, bacterial activity and isotopic fraction-
ation, that also vary with latitude (Fouilland et al., 2018; Thomas,
Kremer, Klausmeier, & Litchman, 2012; Young et al., 2013). A
latitudinal trend in 8*3C values of zooplankton was observed in
the western Arctic (i.e. Bering and Chukchi Sea; Dunton, Saupe,
Golikov, Schell, & Schonberg, 1989), demonstrating the transfer
of this 8*3C signature to the next trophic level.

The two orders of magnitude difference in phytoplankton
production between the nutrient-rich arctic shelves and the ice
covered nutrient depleted arctic basin (Sakshaug, 2004) may par-
water val-
ues of 2.3%. between the arctic shelf (-24.0 + 1.2%o) and arctic
basins (-26.3 + 1.6%o). High rates of primary production cause **C
enrichment of the §'°C-POC values (Boutton, 1991; McMahon,
Hamady, & Thorrold, 2013a). The highly productive Bering Sea

and Barents Sea account for up to two-thirds of the total arctic

tially explain the relatively large difference in §1%C-POC

phytoplankton production (Sakshaug, 2004). Advection of nu-
trients from the arctic outflow and early exposure to sunlight

enhance phytoplankton productivity in the North Water Polynya
(Sakshaug, 2004). In contrast, high turbidity and strong strati-
fication caused by fresh water inflow from rivers onto the inte-
rior shelves reduce light and restrict phytoplankton production
(Dittmar & Kattner, 2003). Lower phytoplankton productivity in
the river influenced Beaufort Sea and Siberian Coast, as well as
the North-East Water Polynia (Sakshaug, 2004) could explain the
depleted §'3C-POC values observed in these regions relative to
the more productive regions.

The *3C depletion in 3'°C-POC
terior shelves, Svalbard fjords, Hudson Bay and Canadian archi-

water Values observed in the in-
pelago compared to other arctic shelf regions likely reflects the
contribution of 3C-depleted terrestrially derived POC (Boutton,
1991) from rivers, coastal erosion and glacial streams. Seventy-
two arctic rivers supplying 40% of the total freshwater input from
the surrounding continents of Eurasia and North America enter the
Arctic Ocean via the interior shelves of the Siberian coast and the
Beaufort Sea (Table 1; Figure 1) at a rate of 2,500-4,200 km?®/year
(Haine et al., 2015). In addition, terrestrially derived POC input
resulting from coastal erosion may be equal to or larger than
input from river discharge in some regions, for instance along
the Siberian coast (Rachold et al., 2000). Finally, glacial fjords on
Svalbard are fed with freshwater by large glaciers and streams
with the highest freshwater inflow in summer during ice and snow
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melt (Cottier et al., 2005). Any temporal alteration of the riverine
inputs or the drainage basins would likely alter the 813C—POCWater
values in the interior shelves and subsequently alter the base of

the food web.

4.3 | Temporal trends at the baseline

The increasing concentration of anthropogenic CO,, known as the
Suess effect, is predicted to decrease the oceanic 53C-DIC val-
ues by an average of 0.017%o. per year, with high spatial variabil-
ity from 0%o per year in the Southern Ocean to 0.024%o. per year
in the subtropical gyres (Tagliabue & Bopp, 2008). In the Arctic
Ocean, the 8*3C-DIC values are predicted to decrease by 0.006%o
to 0.008%o per year (Tagliabue & Bopp, 2008). We observed a
decreasing trend in §13C-DIC values of 0.011 + 0.001%o per year
from 1977 to 2014 across all arctic regions, which is larger than
the predicted trend. Although CO, represents less than 0.5% of
the total DIC pool, it is the only component that is exchangeable
with the atmosphere. In polar regions, especially the Arctic Ocean,
the decline in sea ice has led to an expansion of open water (Arrigo
& van Dijken, 2015). This facilitates atmospheric exchange and en-
hances the dissolved CO, concentration (Yamamoto et al., 2012)
resulting in an additional *3C depletion of §'°C-CO, values (Rau
et al., 1992) which may explain the larger decrease in §'3C-CO,
values (0.011 + 0.002%o per year) and in turn the larger decrease
in 8*3C-DIC values (0.011 + 0.001%o per year) in the Arctic Ocean
compared to the predicted decrease of 0.006-0.008%o. per year
(Tagliabue & Bopp, 2008).

The decadal decline in 8"3C-POC, .., values (1987-2013) was
more than 10 times larger than the trend in 8*3C values of CO, (or DIC)

water

implying that other factors are influencing the §'°C values in POC in
the Arctic Ocean. Since the mid-1990s, sea ice extent has declined by
8.3 + 0.6% per decade across the entire Arctic (Comiso, 2012). Sea ice
algae are up to 7 %o enriched in 3C relative to pelagic phytoplankton
(this study) and a decline in sea ice could decrease the contribution
of ice algal biomass to total productivity and reduce the total mean
§13C values of POC

Barents sea has increased by 15,789 km? or 1.3% per year between

waterr FOr €xample, the open water area of the
1998 and 2012, alongside a 28% increase in net primary production
over the same time period (Arrigo & van Dijken, 2015). Assuming dis-
tinct end members for §'°C-POC, ... (-25.0 + 1.7%o) and §'*C-POC,,
(-20.0 £ 1.3%o) values, sea ice decline would cause the entire pool of
§'3C-POC values to decrease by 0.06 + 0.15%o per year. Additionally,

the photosynthetic isotopic fractionation factor for phytoplankton in

‘water

the Arctic Ocean has increased by 0.045%o. per year since the 1960s,
compared to a global average of 0.022%. per year (Young et al., 2013).
The combined effect of a decline in ice algae (0.06 + 0.15%. per year,
this study), increase in fractionation factor (0.045%o. per year, Young
et al., 2013) and Suess effect (i.e. dissolved CO,, 0.011 + 0.001%o
per year, this study) could potentially cause the 8*3C-POC values to
decrease by 0.116 + 0.15%o per year, which is of the same order of
magnitude as the observed annual decrease in 613C-POCWater values
in the whole Arctic (0.149 + 0.028%o per year) and in the Beaufort

Sea (0.126 + 0.020%o per year; Table 2). In support of this argument,
the difference between the temporal trend or slope in 613C—CO2 and
§'3C-POC values (Figure 4a) increased by 0.138 + 0.028%o per year
in agreement with the sum of the contributions from a change in ice
(0.06 + 0.15%0 per year), fractionation (0.045%o per year) and Suess
effect (0.011 + 0.001%o per year) influencing **C-POC .,

Other factors contributing to the decline in §'°C-POC values in the

Arctic Ocean include river run-off, coastal erosion, primary production

values.

and bacterial activity. Increased riverine run-off (Haine et al., 2015)
and coastal erosion (Jones et al., 2009; Mars & Houseknecht, 2007)
resulting from ongoing climate change in the Arctic could contribute
to the decline in 8*3C-POC values by adding **C-deplete terrestrially
derived material to the marine POC pool. Changes in primary produc-
tivity will also influence the §'3C-POC values. For example, the decline
of 5'3C values in Bowhead whales from the Bering/Chukchi Sea was
interpreted by Schell (2000) as reflecting a 30%-40% decrease in sea-
sonal primary productivity in the Bering Sea over the last 30 years.
Increasing bacterial activity with increasing temperature (Vaqué
et al., 2019; Vernet, Richardson, Metfies, N6thig, & Peeken, 2017) and
dissolved CO, concentration (Grossart, Allgaier, Passow, & Riebesell,
2006) in the Arctic may also influence the 5'3C values of POC.

4.4 | Implications for food web

The reliability of stable carbon isotopes in deciphering the prove-
nance of feeding or migratory patterns of consumers is heavily de-
pendent on knowledge of §'3C values at the base of the food web.
Maps that convey the geographical and temporal trends of 5'3Cvalues
in the baseline, termed isoscapes (Bowen et al., 2009; Graham et al.,
2010), have become a necessity for interpreting trophic structure
using 513C (or §'°N) values (Hansen, Hedeholm, Siinksen, Christensen,
& Grgnkjzer, 2012; Newsome, Clementz, & Koch, 2010). Although
isoscapes have been constructed for the atmosphere (Bowen et al.,
2009), terrestrial environment (Bowen & West, 2008; Firmin, 2016)
and the Atlantic and Pacific Oceans (Graham et al., 2010; McMahon
et al., 2013b), this study provides a first view of §:*C-POC values or
carbon isoscape of the Arctic Ocean. We found spatially heterogene-
ous and temporally evolving *3C values in the POC pool, which has
ramifications for the study of food webs in space and time.

Previous studies have noted that the decline in §:°C in Arctic
marine mammals is larger than the Suess effect alone (e.g.
Matthews & Ferguson, 2014; Newsome et al., 2007), but the lack
of 8'3C baseline information prevented these authors from disen-
tangling the driving factors (Cullen, Rosenthal, & Falkowski, 2001;
Schell, 2000, 2001). Generally, the temporal decline in the §°C
values in marine mammals was larger than in 5'3C-DIC and 8*3C-
CO, values (both of -0.011 + 0.001%. per year) but smaller than
the decline observed in §'*C-POC,__,.. values (-0.149 + 0.028%o
per year). The §3C signature in phytoplankton or a consumer rep-
resents an average ratio related to the lifetime of the organism and
tissue turnover time (Vander Zanden, Clayton, Moody, Solomon, &
Weidel, 2015). Previous studies have shown that the seasonal vari-
ation in 8*°C values of POC was higher than in higher trophic levels
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reflecting the strong seasonal growth cycle of phytoplankton and
shorter time period over which they integrate carbon (O'reilly,
Hecky, Cohen, & Plisnier, 2002). In contrast, consumers from zoo-
plankton to predators are long-lived and thus integrate 5'3C values
over their seasonal foraging and migratory routes (Aubail et al.,
2010; Schell, Saupe, & Haubenstock, 1989) with the time of inte-
gration depending on the tissue type (Vander Zanden et al., 2015)
or the animals’ lifetime (O'reilly et al., 2002). The effect of yearly
averaging of the 5'3C values in marine mammal teeth and baleen
plates used to reconstruct decadal trends may have reduced the
larger, short-lived variation observed in 53C-POC values mainly
representing summer in this study. The gradual linear decline in
§13C values in arctic seals and whales likely reflects alterations to
the §'C-POC values. A change in diet, for example, a shift towards
foraging closer to freshwater (Nelson et al., 2018), or more pelagic
feeding habits (Aubail et al., 2010), may also contribute to the tem-
poral decline in §!3C values observed in predators.

This study demonstrates that to disentangle factors driving vari-
ation in the 8'3C values in a consumer, it is vital to know the spatial
heterogeneity and temporal evolution of §'3C values of the baseline in
the Arctic Oceanin order to avoid inaccurate interpretation of changes
in food web structures. Some studies have attempted to correct the
§13C values in arctic marine mammals for the Suess effect using mod-
elled and predicted values for large geographical regions, prior to in-
terpreting decadal trends in 813C values (Carroll, Horstmann-Dehn,
& Norcross, 2013; Misarti et al., 2009; Nelson et al., 2018). However,
the Suess effect varies spatially (Tagliabue & Bopp, 2008), and there-
fore, local values should be used for this correction. For example, the
Suess effect in the Arctic Ocean (0.011 + 0.001%o per year, this study)
differs from the predicted modelled values (0.006-0.008%. per year;
Tagliabue & Bopp, 2008), implying that other factors, such as the loss
of sea ice, are accelerating the influence of anthropogenic CO, in the
Arctic. In addition, the decline in 5'c-PoOC values, representing the
base of the food web, is larger than the decline in 5'3C-DIC values
(this study). This suggests that interpretation about diet shift should
be done after consideration of temporal trends in §*C-POC values
and not only in 8'3C-DIC (Suess effect). These results also highlight
the importance of considering time-averaging effects when studying
different trophic levels and/or tissues having, respectively, variable
lifetime and turnover time. Insight from this study has direct impli-
cations for how we interpret changes in 513C values in consumers,
especially in environments experiencing rapid change.
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